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The fourth draft of the Particulate Matter [PM] Criteria Document [DCD4] was issued by 
EPA in June 2003.  DCD4 examines a number of statistical issues relevant to connections 
between ambient PM variations and corresponding variations in health and mortality 
indicators.  The discussion centers on relating temporal variations through time series 
modeling, and on relating geographic variations using cohort studies.  Although DCD4 
comments critically on a number of issues, its conclusions seem to reflect an unwarranted 
leap over many of the criticisms that it, itself, has raised.  In addition, there are several 
issues not adequately addressed in DCD4, and DCD4 is sometimes completely uncritical 
of the literature that it cites in support of its conclusions.  In this review I address several 
statistical issues in DCD4 and indicate how they affect conclusions drawn about the 
health effects of PM.  The issues addressed here are grouped into the following 
categories. 
 

1. Confounding of weather and PM effects 
2. Confounding of time trends and PM effects 
3. Heterogeneity of PM effects and effect modification 
4. Heterogeneity of exposure 
5. The relation between exposure and response 
6. Lag selection and distributed-lag models 
7. Mortality displacement 
8. Long-term PM-mortality studies 

 

1. CONFOUNDING OF WEATHER AND PM EFFECTS 
 
Because PM variations are correlated with variations in weather, special care is needed in 
separating PM effects from the much larger effects of weather.  DCD4 cites HEI 
reanalysis studies that point to the sensitivity of PM effect estimates to the modeling of 
weather effects, see Health Effect Institute (2003).  However, reasons for the PM-effect 
sensitivity to temperature modeling are not explored. Therefore, a distinct possibility 
remains that more careful modeling of PM and weather could show that the reported PM 
effects are substituting for some of the weather effects. 
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While DCD4 describes PM effect sensitivity to alternative modeling of weather, it does 
not at all address the key assumption that weather and PM effects are additive, an 
assumption that is built into all the PM effect estimates that are cited by DCD4. The 
additivity assumption is very strong and it presumes that the incremental effects of PM 
would be the same at any level of temperature and humidity.  Thus, for example, the 
presumption is that incremental PM effects are the same at moderate temperature and 
humidity as they are at extreme temperature and humidity.  If this assumption should fail, 
then additive modeling of PM effects, as relied on by DCD4, can lead to uninterpretable 
estimates of PM effects. This is especially true when the proportionality of PM effects, as 
a function of PM exposure, is in question.  Without a systematic exploration of non-
additivity, we cannot conclude that some part of the weather effects is mistakenly 
attributed to PM. 
 
There are several strategies for incorporating non-additivity, i.e., allowing for differential 
PM effects at different levels of the confounding variables.  One strategy is to allow for 
the estimation of a joint response surface that includes both PM and weather.  In addition 
to providing better separation of effects, the joint response surface provides a fuller 
understanding of PM effects and a better guide to regulation and public policy.  A joint 
response surface could be of the spline type or other parametric or semi-parametric form.    
Roberts [2003a] explored the mortality effects of PM and temperature, in combination, 
using a nonparametric response surface.  His analyses were applied to time series data 
from Pittsburgh and Chicago and these analyses indicate that the additivity presumption 
may not be plausible. 
 
A second strategy for incorporating non-additivity of PM effects is to stratify, effectively 
to get different PM effect estimates for different temperature strata, see Morris and 
Naumova (1998) who examined mortality and morbidity effects of CO for different 
temperature strata.  A similar strategy has been used in studies that seek to separate 
seasonal effects from PM effects.  For example, winter and summer PM effects could be 
separately estimated by including two PM effect parameters in the model. Where separate 
season-specific estimates of PM effects have been obtained, it is not uncommon for these 
effect estimates to be different; see Lumley and Sheppard (2000) and Smith (2000) for 
example.  Roberts (2002), in a recent reanalysis of the Chicago mortality time-series data 
found positive PM mortality effects in summer and negative PM mortality effects in 
winter.   
 
An advantage of the stratification approach to non-additivity is that it is simple to 
describe and apply in a uniform manner to data from multiple cities.  This approach has 
been applied by Roberts (2003a) who obtained separate PM mortality effect estimates for 
three temperature strata using daily data from Chicago and Pittsburgh. His findings show 
that PM effects are not uniform across temperature strata.  The warm temperature stratum 
showed a positive PM mortality effect, the cold temperature stratum showed a negative 
effect, and the moderate temperature stratum showed no effect. 
 
Similar issues arise with regard to confounding of PM effects with those of other co-
pollutants.  Although DCD4 reports that the PM effect estimate is little changed when co-
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pollutants are entered additively into the model for daily mortality, it goes on to say  (sec 
8.4.8.2) that multi-pollutant analyses could be misleading when the spatial heterogeneity 
of the co-pollutants is very different from that of PM.  For example, for a co-pollutant 
that is spatially more heterogeneous than PM, the ambient concentration measurement 
error could be much larger than that for PM, which would affect the relative sizes of 
effect estimates.  Also, co-pollutant studies have ignored PM and co-pollutant 
interactions, essentially relying on additivity of effects.  
 
Finally, DCD4 (p. 8-212) suggests that a principal components analysis, in the context of 
multiple pollutant exposure, could provide useful new information, citing Mar et al. 
(2000). This point of view seems to derive from the fact that the new principal 
component variables are uncorrelated with one another, unlike the original pollutant 
variables.  However, principal component coefficients (loadings) are themselves unstable 
if the pollutant variables have sizable cross-correlation.  It would be inappropriate to rely 
on interpretations of these coefficients to draw conclusions about the relative importance 
of different pollutants. 
 
 
 
2. CONFOUNDING OF TIME TRENDS AND PM EFFECTS 
 
DCD4 relies heavily on multi-city time series analyses for its estimates of the health 
effect of PM, in particular the 90-city NMMAPS study, Samet et al. (2000), subsequently 
reanalyzed in HEI (2003).  This study acknowledges the possibility of confounding of 
PM effects with slowly evolving time-varying influences on mortality, including seasonal 
effects, epidemics, trends in population characteristics, health care, etc.  This is an 
inherent problem in time series studies of PM effects.  To address the time confounding 
issue, the models used by NMMAPS incorporate an explicit time trend adjustment, 
represented by a richly parameterized function that is simultaneously estimated with the 
PM effects.  Consequently, only short-term effects of PM are effectively estimated. 
[These short-term effects are the ones that are confounded by weather variations on the 
same time scales, as described above.] 
 
However, the recent reanalysis of the 90-city study by HEI (2003) found that PM effect 
estimates are sensitive to the parameterization of the time trend and weather variables.  
DCD4 (p.8-197) notes this sensitivity as a possible cause for variability of PM effect 
estimates.  As expected, a time trend with richer parameterization will capture shorter 
scale fluctuations in mortality and reduce the apparent PM effect.  There is no obvious 
level at which to cut off time trend effects in favor of PM effects and this conundrum is 
not resolved.  The lack of robustness of PM effect estimates remains an unresolved issue 
and may point to deeper confounding problems. 
 
But the reanalysis cited above did not address the additivity assumption in which the PM 
effect is forced to be the same regardless of the level of the time trend adjustment.  This 
is known to be an issue because studies of PM effects by season indicate that the PM 
effects can indeed be different in different seasons; see Smith (2000) for example.  Thus 
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the issue of confounding of time trends and PM effects is largely unresolved although the 
reanalysis of the 90-city study provided important new information. 
 
 
 
3. HETEROGENEITY OF PM EFFECTS AND EFFECT MODIFICATION 
 
DCD4 (sec. 8.2.2.3) correctly emphasizes the importance of the 90-city study, citing 
Samet et al. (2000) and Dominici et al (2000a, 2002) where the same modeling strategy 
was used for all cities in the study.  The reanalysis of this study in HEI (2003) reduced 
PM mortality effect estimates by a factor of two and increased their associated standard 
error estimates.  The combination of decreases in effect sizes and increases in standard 
errors for individual-city PM effects meant that genuine inter-city effect differences could 
no longer be discerned, i.e. the formal test of the null hypothesis of homogeneity is not 
rejected at the conventional 5% level of statistical significance.  However, as always, it is 
dangerous to draw conclusions from the failure to reject a null hypothesis without an 
adequate study of the power of the statistical test against specific heterogeneity 
alternative hypotheses.  It is likely that the power of the homogeneity test is inadequate to 
detect inter-city effect differences that would prove important to an understanding of the 
data.  Such a study of power could and should be undertaken.   
 
While DCD4  (sec. 8.4.7.1) cautions that the issue of inter-city heterogeneity of PM 
effects is not completely resolved, it seems nevertheless to rely heavily on combined 
analyses for its conclusions.  Combined multi-city analyses are cited not only in 
connection with PM effect estimates but also in connection with the DCD4 discussion of 
concentration-response modeling (sec. 8.4.6) and mortality displacement (sec. 8.4.9.1) 
both of which are discussed later in this review.   
 
There are apparent differences among certain city groupings. The grouping of northeast 
US cities shows a combined effect twice as large as the overall grouping.  While there are 
conjectured explanations such as differing chemical composition of PM, none of these 
conjectures has been examined with data.  A test for PM-effect homogeneity between 
regional groupings has not been reported, although it seems plausible that the 
homogeneity hypothesis would indeed be rejected based on the grouping. 
 
The approach used in NMMAPS both in their original analysis, Samet. et al. (2000) and 
in their reanalysis, HEI (2003) is to consider inter-city PM effect differences as genuine 
but unexplained random differences.  Adopting this random effects approach implicitly 
introduces the notion of a population of cities for which the 90 study cities are treated like 
a random sample of cities.  This approach also introduces the notion of a population 
mean PM effect.  Under the adopted model, this population mean PM effect is reported as 
a single PM effect summary statistic, see DCD4 (Table 8-34) for example.  However, the 
“population” mean is a model construct and its estimation, per se, should not be of great 
interest in the real regulatory world.  Nevertheless, the random effects model is useful for 
refining the individual city-specific estimates of PM effects and their precision and it 
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does allow for the incorporation of a spatial model for regional-scale variation of PM 
effects. 
 
This is not to say that PM effect estimates for different cities could not be combined in a 
somewhat more meaningful way.  For example, one could obtain a population weighted 
combined PM effect estimate for the 90 cities together with an associated confidence 
interval.  If, for the moment, we allow the correctness of a linear PM effect in every city, 
then this combined population weighted estimate can be interpreted in terms of the 
overall effect of a simultaneous fixed PM reduction in all 90 cities.  One could also 
divide the pooled data into 5-year periods and examine the variability among combined 
PM effect estimates for each period.  Such data splitting provides a simple check on 
robustness of the modeling exercise. 
 
A third approach to differences among PM effect estimates is to relate such differences to 
characteristic differences among the 90 cities of the study. This is called “effect 
modification and is a potentially useful approach.  DCD4 (sec. 8.1.3) carefully and wisely 
distinguishes between the issues of confounding and effect modification.  Effect 
modification arises as an issue only when PM effects have been separately computed 
from different data sets using the same model and estimation procedure, as in the 90-city 
study.  Effect modifiers are not time-series variables that could be confounded with time-
varying PM.  Rather, effect modifiers are exogenous variables whose values differ among 
cities. 
 
DCD4 (p.8-33) discusses a variety of possible and sometimes plausible PM effect 
modifiers for the diversity of PM effect estimates.  Some putative PM effect modifiers for 
which data are available are variable demographic characteristics, climate statistics, 
proximity to pollutant sources, or statistical summaries of pollutant concentrations akin to 
climate statistics, and the statistical precision of the effect estimates.  Samet et al. (2000) 
could not identify PM effect modifiers among those that they examined.  Other potential 
effect modifiers, such as differences in chemical composition of PM in different cities, 
have not been sufficiently examined, likely because relevant data are not readily 
available.  While there are many proposed effect modifiers, few have been investigated, 
so we are still in the dark regarding inter-city differences. 
 
The approach typically used to test putative effect modifiers treats the separately 
estimated PM effects for each of the 90 cities as dependent-variable data for a second-
stage regression analysis as described in DCD4 (p. 8-33).  A better approach, potentially 
with more statistical power, would be to simultaneously estimate PM effects at all cities 
using a parameterization of the PM effect or the baseline mortality rate that depends on 
the putative effect modifiers.  An interesting possibility is to use the long-term PM 
average concentration as an effect modifier for the baseline mortality in the multi-city 
time-series studies, perhaps in conjunction with demographic descriptors.  This modeling 
approach creates the possibility to simultaneously estimate both acute and long-term PM 
effects. 
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The fact that few if any convincing PM effect modifiers have been found to account for 
differences among PM effect estimates is disconcerting because the discrepant PM effect 
estimates remain unexplained.  Unresolved discrepant PM effect estimates, derived from 
the same modeling approach, could also result from inadequacies in the modeling 
approach such as an incorrect treatment of confounding variables or an incorrect 
characterization of the exposure-response relationship.  So failure to resolve the 
heterogeneity issue will cloud other analyses of the data that are based on multiple cities. 
 
Finally, it is important to draw attention to regulatory implications of unresolved 
discrepancies among PM effect estimates for different cities.  For example, in a number 
of cities the analysis suggests that PM health effects are absent.  In such cities where PM 
effects are absent, would any health benefit be derived by reducing ambient PM? 
 
 
 
4. HETEROGENEITY OF EXPOSURE 
 
There is no disagreement that exposures to ambient PM will vary across the population 
on any given day for which a single ambient concentration is reported.  DCD4 discusses 
certain issues associated with the relationship of ambient PM concentration and levels of 
human exposure to ambient PM which it terms “measurement error”; see DCD4 
(sec.8.4.8), for example.  There are two sources of population exposure variability for a 
given ambient concentration.  One obvious source is the heterogeneity among individual 
microenvironmental trajectories, such as variations in time spent outdoors, variations in 
residential and workplace penetration and air exchange factors.  A second source of 
exposure variation is the spatial heterogeneity of PM concentrations, which induces 
different exposures relative to the monitoring site(s) used to measure ambient PM. 
   
Personal exposure studies such as the Toronto study by Clayton et al. (1999) show 
substantial heterogeneity of PM exposure among individuals within the same city.  
Likewise, multiple ambient PM monitoring sites within a single city show important 
spatial differences in ambient PM such as the Chicago and Los Angeles study by Ito et al. 
(1995) and the Chicago and Pittsburgh study by Roberts (2003b).  In the typical time-
series study for a city, such as Dominici et al. (2000a), the time-varying measure of 
exposure is obtained by averaging data from available ambient monitoring sites in that 
city.  For ecological long-term PM effect studies, such as in Pope et al. (2002), the single 
exposure number for each city is obtained as both a time-averaged and spatially averaged 
concentration for all monitors in that city. 
 
If the concentration-response relationship were exactly linear, and if the population 
average exposure to ambient PM was in constant proportion to the reported ambient PM, 
then it could be argued that the estimated effect per unit increase in reported PM is not 
affected by population variability in exposure.  But it is important to distinguish between 
the unit effects of reported PM and the unit effects of PM exposure.  The proportionality 
factor relating population exposures to reported PM is likely to be different in different 
cities. The estimated unit effects of PM would not then be comparable across cities 
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without an understanding of city-specific relationships between exposures and reported 
PM.  Heterogeneity across cities in the relation between monitored PM concentrations 
and average population exposures will directly affect PM effect estimates.  Combined 
PM effect estimates across cities, such as those reported by NMMAPS, implicitly and 
implausibly assume that the relation between monitored ambient PM and ambient PM 
exposure is the same across cities.  
 
In cities with multiple PM monitors, estimated unit effects of PM from time-series studies 
can vary widely, depending on which monitor or combination of monitors is used as the 
ambient PM measure, see Ito et al. (1995) and Roberts (2003b).  Roberts obtained these 
PM effect estimates using a Poisson regression adjustment model comparable to the 
model used in the 90-city study by Samet et al. (2000), but care was taken to use 
estimating procedures that are not affected by computational issues identified for the S+ 
implementation of GAM models.  Both Ito et al. and Roberts show that it is not 
necessarily the case that straightforward monitor averaging provides more precise 
estimates of PM effects than other monitor combinations or even single monitors.   
 
For example, of the twelve Chicago sites that monitored PM10 during 1987-1994, four 
sites showed consistent significant positive association with same day mortality, while 
the other eight sites showed negligible and non-significant mortality associations. 
Furthermore, when PM10 is averaged over all 12 sites, it is not as strongly associated 
with mortality as the four selected sites.  It could be argued that, if one monitor records 
proportionally lower ambient PM than a second monitor, the first monitor will show a 
correspondingly larger unit PM effect because both monitors are used to explain the same 
community-wide time series of health effects.  However, in the cited studies the disparity 
in effect estimates among different monitors is not closely associated with the magnitude 
of measured ambient PM.  If the true PM exposure-response function were nonlinear, 
such as a response function with a threshold, then the relationship among effect estimates 
for different monitors could be quite complicated.   
 
Another implication of within-city spatial variability goes to the issue of co-pollutant 
confounding.  PM is reported to be spatially more homogeneous within a city than 
gaseous co-pollutants that are potential confounders, as seen for example in Ito et al. 
(1995).  Then the city average for PM may be more representative of PM exposure than 
the city average for the gaseous pollutants, leading to the possibility that the PM effect 
estimate will carry effects properly attributable to gaseous pollutants, see DCD4 
(sec.8.4.8.2). 
 
Finally, there is the regulatory question that is posed by the heterogeneity of PM effect 
estimates. Averaging heterogeneous PM effect estimates does not make the heterogeneity 
go away.  The regulatory question concerns the implied reduction in health effects that 
could be expected from a specific regulatory standard.  For example, based on results 
from the multi-city studies, it is reasonable to suppose that a reduction of ambient PM 
will produce no health benefit in some cities, even based on random-effects models.  This 
could be due to differences in chemical composition of PM in such cities, or due to the 

7 



weak relation between ambient PM and PM exposure in such cities, or other specific 
attributes of such cities. 
 
 
 
5. THE RELATION BETWEEN EXPOSURE AND RESPONSE 
 
In the preceding section, I referred to implications for PM health effect estimates of the 
relation between ambient PM concentration and population PM exposure.  But the 
implications for ambient PM health effect estimates cannot be fully understood without 
also considering the relation between PM exposure and health effects.  Much of the work 
on the measurement error approach, exemplified by Dominici et al. (2000b) and Zeger et 
al. (2000), is solidly tied to an assumption of proportionality, i.e., the health effect 
reduction that follows from a fixed decrease in ambient PM is assumed to be the same 
regardless of the current PM level.  Furthermore, one could double the health effect 
improvement by doubling the PM reduction, so there is no obvious regulatory threshold 
based on health effects under this assumption. 
 
DCD4 discusses the issue of exposure-effect proportionality, vis-à-vis exposure 
thresholds, in several places (section 8.4.6, for example).  When non-proportional effects 
are allowed in the effect estimation model, the estimated ambient PM-effect relation 
often departs from proportionality, as can be seen for many cities in multi-city studies, 
such as Daniels et al (2000) and Dominici et al. (2002).  In these studies, the response is 
modeled as low-order parametric spline function of ambient PM.  Application of the 
spline response model to different cities yielded a variety of response shapes, often with 
inadequate precision.  A better approach could use equally-spaced discretized levels of 
ambient PM, say L1,L2,.. with nested indicator variables I(PM<L1), I(PM<L2),.. .  This 
kind of analysis would give direct estimates of the incremental ambient PM health 
response at each succeeding PM concentration level, together with an interpretable 
estimate of its uncertainty.   
 
Many of the disparate separate city estimates of PM response functions, reported in 
DCD4, seem more like non-proportional response functions, and those that are more or 
less proportional have varying proportionality constants indicative of different PM effects 
in different cities.  However, in several multi-city studies PM response functions were 
pooled across cities, as in Schwartz, Zanobetti (2000) and Daniels et al (2000), even 
though city-to-city differences among PM-effect response functions are not obviously in 
the range of sampling variability.  Such pooling across cities could create a pooled 
response function that is roughly linear, as pointed out in the two studies cited in this 
paragraph.  However, a pooled response function is not readily interpretable, and the 
putative benefits of ambient PM reductions in any particular city cannot be deduced from 
the pooled response function. The conclusions of DCD4 rely strongly on questionable 
commonality and linearity of the PM-effect response function.   
 
However, such pooling of response functions across cities ignores monitoring/exposure 
heterogeneity among cities, as described in the preceding section of this review.  
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Furthermore, a pooled PM-effect response function has no concrete interpretation in the 
presence of heterogeneities of various kinds.   Given the inter-city heterogeneity of PM 
response functions, a combined PM response function that applies to no city, nor to the 
group of cities treated as single data set, provides little insight for standard-setting 
purposes.  Unfortunately, DCD4 discounts the importance of studies that show response 
thresholds, see Smith et al. (2000) for example, in favor of pooled response functions that 
are difficult to interpret.   
 
Better insights into the relationship between monitored ambient PM concentrations and 
anticipated community-level PM health effects could be obtained by modeling the 
relationship between monitored PM and individual PM exposure such as Dominici et al. 
(2000b).  However, individual-level exposure modeling should go hand-in-hand with the 
individual-level modeling of response to PM in order to build a model for community-
level response to ambient PM.  Individual-level response modeling is not incorporated in 
the above-cited reference where it is implicitly assumed that a common linear response 
function applies to all individuals. There are various approaches to individual-level 
response modeling, the simplest being to use a parametric family of response functions 
with parameters treated as random effects distributed across the community. As an 
example, a parametric family of response functions could allow for the possibility of 
individually varying response thresholds. 
 
To see the possible consequences of heterogeneous non-linear response at the individual 
level, consider the following illustrative example: 
 
 
 
    Day 1  Day 2  Day 3 
 
Individual Exposures:  1   2   3 2   3   4  3   4   5 
Individual Responses:   0   0   0 0   0   0 1   1   1 
 
Community Exposure: 2.00  3.00  4.00 
Community Response:  0.00  0.00  1.00 
 
The above table should be interpreted as follows:  On day 1, personal exposures to a 
pollutant vary and are equally divided among concentration values 1, 2, 3 .  Similarly, on 
day 2 and day 3, personal exposures to the pollutant vary and are equally divided among 
concentrations 2, 3, 4 and 3, 4, 5, respectively.  There are no health responses on day 1 
and day 2, but all individuals respond on day 3.  The community-level exposure and 
response for these three days are obtained by averaging the individual exposures and 
responses.  If the exposure-response function were assumed linear, then the linear 
regression fitted to the individual level exposure-response data would indicate an effect 
reduction of 0.25 per unit reduction of the pollutant.  However, a linear regression fitted 
to the community-level data indicates an effect reduction that is twice as large.  At the 
individual level, the empirical exposure-response function exhibits a threshold: 
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Exposure: 1 2 3 4 5 
Response: 0 0 0.33 0.50  1 
 
This example is meant only to demonstrate how imposed linearity of exposure-response 
can be misleading when there is heterogeneity of individual exposure. 
 
Personal exposure studies are sometimes used to infer non-ambient personal PM 
exposure, via regression of daily total personal PM exposure on daily ambient PM.  Non-
ambient PM exposure can be seen as a co-pollutant, albeit presumably with the same 
exposure-response function.  The question is whether non-ambient PM effects might be 
confounded with ambient PM effects.  DCD4 reports that the two PM exposures are not 
correlated over time (Section 5.5.2) and therefore non-ambient PM exposure should be 
ruled out as a potential confounder of ambient PM exposure.  However, the non-ambient 
PM is a computed residual from a regression, therefore one needs to account for the 
downward bias in the naïve correlation between the computed non-ambient PM and the 
ambient PM regressor variable. [The ratio of ambient PM exposure to monitored PM 
could depend on the monitored value, for example because daily and seasonal air 
exchange in indoor environments could be correlated with ambient PM.]  The possibility 
of non-ambient PM exposure as a possible confounder has not been ruled out. 
 
Weak cross-correlations of ambient PM measurements between monitors in the same city 
suggest that a PM-effect analysis, based on a composite ambient time series for that city, 
is likely to be misleading.  In particular, weak cross-correlations, as seen for example in 
Salt Lake City, imply that human exposures to ambient PM will likewise be weakly 
correlated with the composite ambient PM measurement.  Thus reported health effects in 
cities with weak correlations between monitors should be viewed skeptically. 
 
 
6. LAG SELECTION AND DISTRIBUTED-LAG MODELS 
 
DCD4 (Section 8.4.5) discusses the issue of model selection in connection with choosing 
time-series lags that maximize PM effects.  A common 1-day lag was chosen for the 90-
city study (Dominici et al. 2002) to mitigate a strong model selection bias that would 
arise if the choice of lag was optimized separately for each city.  However, there is still 
bias present because the 1-day lag was selected because it had the largest overall 
estimated effect among the three lags that were considered, and it was the only lag choice 
with clear overall statistical significance based on the HEI reanalysis.  Simulation studies 
by Lumley and Sheppard (2000) have shown that lag selection bias can be of the same 
order as the estimated PM effect itself.   
 
 An alternative approach to lag selection is to use a distributed-lag model, where PM 
effects extend over several days and separate coefficients are estimated for all lags 
included in the model, typically 5 to 30 days.  This approach has some attractive 
possibilities and can potentially extract more information regarding short-term PM 
effects.  As a salutary exercise, one could include non-causal negative lags as a check on 
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the credibility of the distributed lag model, but none of the reported studies considered 
this possibility.   
 
However, the distributed-lags literature cited in DCD4, such as the Schwartz (2003) 10-
city study, has at least one serious shortcoming: if one is to allow PM effects to extend 
over several days then one should also allow effects of confounding variables, such as 
weather and co-pollutants, to extend over several days.  Failure to allow for distributed-
lags in confounding variables can lead to an exaggeration of the PM effects summed over 
lags.  Summed lag effects, as reported in DCD4 (8-237) are typically several time larger 
than single lag effects, but they do not account for distributed-lag weather and co-
pollutant effects.   
 
 
 
7.  MORTALITY DISPLACEMENT 
 
Analyses of time-series PM mortality data, using distributed-lag models, have also been 
used to claim that reported PM mortality effects do not represent mortality displacement 
of frail individuals with short longevity, see Schwartz (2000).  On the one hand the series 
of effect coefficients as a function of lag are characteristic of mortality displacement, and 
on the other hand, the sum of the effects coefficients are larger than that obtained by 
using a single effect coefficient which is used as an argument against mortality 
displacement.  Neither of these claims is derived from an analysis in the context of an 
explicit mortality displacement model, so the conclusions are simply interpretations.  
This study used distributed lag model estimates that were pooled across 10 cities, further 
obscuring the clear differences among cities in characteristics of the lag coefficients.   
 
Roberts (2003a) examined the behavior of distributed lag coefficients using a frail 
population model and concluded that neither the serial pattern of these coefficients nor 
their sum is necessarily indicative of mortality displacement.   Thus further study is 
needed to understand what information is provided by distributed-lag models relevant to 
the question of mortality displacement.  The simulation study reported by Zeger et al. 
(1999) is based on a decomposition of the mortality time series into shorter and longer 
time scales, but does not use an explicit frail population model to generate daily 
mortality.  A characteristic of mortality displacement in frail populations is that the initial 
excess of deaths following a high pollution day is recouped gradually over an extended 
period, which was not reflected in their choice of simulation model.  The most promising 
approach is that of Smith et al. (1999), Murray and Nelson (2000), and Roberts (2003a) 
who study PM effects explicitly in the context of frail population models.  In the 
examples that they have studied, it appears that any excess PM mortality is indeed 
consistent with mortality displacement in frail populations with mean lifetime on the 
order of weeks. 
 
DCD4 notes the inconsistency of mortality-displacement conclusions obtained on the one 
hand by interpretations of distributed lag models and frequency decomposition, and on 
the other hand by frail population models (8-273).  But, somewhat incongruously, DCD4 
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is dismissive of the early suggestions of mortality displacement for PM.  The policy 
implications are admittedly large if the acute effects of PM are indeed confined to a frail 
population. 
 
DCD4 also cites a calculation of PM longevity effects (8-273) by Brunekreef (1997).  
The claim is that the life expectancy of 25 year olds is reduced by 1.11 years for each 
10µg/m3 of time-averaged PM.  The estimate is derived from the ecological study of 
long-term PM mortality by Pope et al. (1995).  The Brunekreef model calculation was not 
checked against available data but it would be a good idea to do so, if only to see whether 
the implications of the PM mortality effect estimates are in accord with actuarial data.  
Checking would require a comparison of demographically adjusted mortality tables for 
different cities with different time-averaged PM, a plausible and necessary undertaking. 
 
 
 
 8. LONG-TERM PM-MORTALITY STUDIES 
 
DCD4 refers to several long-term ecological cohort studies of PM health effects, of 
which Pope et al. (2002) is the latest and most comprehensive.  In these long-term studies 
PM and mortality for each city are represented by single average numbers that do not 
vary over time.  The ecological studies cited by DCD4 are cohort studies that are limited 
to enrolled individuals for whom individual covariate information is available such as 
demographic information and smoking habits.  The individual covariate information is 
used to adjust crude mortality rates for the enrolled cohort so as to even out the mortality 
comparisons between cities.  PM health effects are inferred by relating time-averaged 
adjusted mortality to time-averaged monitored PM across cities. 
 
Both the Pope et al. (2002) cohort study of long-term PM effects and the Dominici et al. 
(2002) time-series study of short-term PM effects involve a comparable number of U.S. 
cities.  However, geographic variation in the cohort studies takes the place of time 
variation in the time-series studies.  City-specific effect modifiers in time-series studies, 
as discussed earlier, become confounding variables in the cohort studies.  A putative 
confounding variable in a cohort study is one that shows geographic covariability with 
PM.  Thus, demographic adjustments in the cohort studies are a way of accounting for 
potential confounding of PM effects by demographic variables.  Similarly, between-city 
variations of co-pollutants and climate variables could be related to between-city 
variations of PM and thereby contribute to confounding of PM effects. 
 
On the other hand, where it is possible to split the data record into time segments, then a 
separate cohort-based analysis of PM effects could be done for each time segment, as was 
done in a very limited way in Pope et al. (2002).  For example, it would be 
straightforward to repeat the analysis using cohort deaths in 5-year intervals.  Then the 
different time-segment PM effect estimates in the cohort study are analogous to different-
city PM effect estimates in the time-series studies, and issues of PM effect heterogeneity 
would need to be addressed.  A cohort study that looks at a single time period is, in this 
respect, analogous to a time-series study for a single city. 
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In some important ways, however, a multi-city cohort study suffers from disadvantages 
vis-à-vis a single-city time-series study.  For example, in a time-series study the 
population at risk is the same each day while in the cohort study the population at risk in 
each city is different and models are needed to bring the separate at-risk populations into 
alignment.  Also, the assigned PM concentration for a city needs to be related not to the 
average city-wide PM exposure but rather to the average PM exposure of the cohort 
assigned to that city.  Further, it is reasonable to suppose that this exposure measurement 
error will be different for different cities. 
 
With a fairly dense collection of cities, unmodeled geographic effect differences could be 
partially modeled as spatially autocorrelated residuals, as was done in this study.  This is 
a useful addition that is akin to allowing for temporal autocorrelation of residuals in time-
series studies to account for unmodeled variations in effects over time.  Even modest 
autocorrelation can sometimes have important consequences, especially on the precision 
of effects estimates. This is analogous to incorporating smooth time trends as explanatory 
variables in time-series studies. This cohort study states that incorporating spatial 
autocorrelation and using a spatially smooth residual field takes care of unmodeled risk 
factors; however, this could only work if the unmodeled risk factors were themselves 
spatially smooth fields.  Unmodeled risk factors can be geographically correlated with 
PM without having a locally smooth spatial structure. 
 
A strength of this study is the stratification approach that was used to estimate PM effects 
separately for different age groups, sexes, education levels, and smoking status.  The 
stratification approach bypasses some of the additivity assumptions that pervade the time-
series studies.  Figure 4 of Pope et al. (2002) shows clearly that PM effects can be 
different for different age groups, sexes etc.  Strict additivity would have enforced a 
common PM effect at all levels of all control variables, as in the time-series studies.  Of 
course, some additivity assumptions are necessary to avoid multi-way stratification of the 
data with severe loss of estimation precision.  Generalized additive models were used 
presumably at the point of combining effects of control variables but it was not clear to 
me how this was done.  DCD4 (8-106) reports that the convergence problem of the S-
Plus estimation routine did not impact PM effect estimates in this study. 
 
Although pollutants other than PM were considered in Pope et al. (2002), it does not 
appear that these co-pollutants were used to adjust the baseline mortality when the PM 
effect was estimated.  Perhaps, more significant, is that there was no explicit adjustment 
for climate variables -- variables for which ample information is available for any time 
period.  Climate effects would not be efficiently modeled by a nonspecific spatial trend.  
Omission of these potentially important confounders is a significant shortcoming of that 
study. 
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9. CONCLUSIONS 
 
DCD4 appropriately emphasizes multi-city studies, in particular the 90-city study, 
because a common modeling approach was used.  Thus the heterogeneity of PM effect 
estimates is less attributable to disparate model selection.  However, a multiplicity of 
cities does not guarantee that there are not important model deficiencies in the common 
model and the statistical methods relied upon by DCD4.  This review describes some of 
these deficiencies and offers suggestions for strengthening the analysis.  Because of the 
deficiencies in DCD4, we cannot draw comfortable conclusions regarding the 
circumstances and magnitudes of ambient PM health effects, or whether reported PM 
health effects are causative.  Below I briefly summarize points made in this review. 
 

1. Sensitivity of PM estimates to model specification.  This issue was brought to 
light in the HEI reanalysis in the context of time and weather adjustments, and 
serves as a cautionary tale.  The reported effects of PM are often difficult to 
discern and are inconsistent among cities, regions, seasons, and time lags.  Such 
inconsistencies may be suggestive of modeling inadequacies, particularly in 
regard to unmodeled confounding and unexplained effect modifiers. 

 
2. Enforced additivity in the analysis model. The analysis model assumes that the 

PM health effect is necessarily the same at any temperature, in every season, and 
at any level of the co-pollutants.  Limited analyses show that this assumption is 
likely to be seriously violated.  There are at least three approaches to mitigate the 
problem, depending on availability of data – joint response surface modeling of 
PM and its confounders, stratification of the analyses based on confounder 
categories, or making the PM response be a parametric function of covariates. 

 
3. Enforced linearity of exposure-response. There is evidence that PM health 

effect reductions would be different at different PM levels, depending on 
geographic location.  This has important implications for regulation.  Enforced 
linearity conceals heterogeneity of response, and pooling of response functions to 
obtain linearity is not statistically justified and leads to regulatory dilemmas. 

 
4. Unexplained heterogeneity of PM health effect estimates.    There are 

significant differences among estimates of PM health effects for different cities 
and using different PM monitors within the same city.  There is no reconciliation 
of these differences in DCD4, which makes it hard to argue from the 
epidemiologic data for a causative role for PM, and which casts doubt on the 
completeness of the model under which the data have been analyzed. 

 
5. Incomplete characterization of the relations between ambient PM exposure, 

individual PM exposure, individual PM susceptibility to health effects, and 
community level health effect measures. While there has been progress in 
modeling and understanding relations between the time variations of individual 
exposure and ambient PM, the important link to individual response functions on 
the health effects side has not been made.  The topic is important because it 
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provides modeling guidelines for community level studies and elucidates the 
anticipated benefits of PM reductions. 

 
6. Insufficient attention to the issue of mortality displacement.  Some studies 

suggest that acute PM mortality effects are consistent with mortality displacement 
in frail populations.  This issue is important for public policy and needs to be 
studied more intensively.  In the meantime DCD4 should not be so dismissive. 

 
 
The fourth draft of the PM Criteria Document (DCD4) emphasizes the “coherence” of 
PM health effect estimates across a number of epidemiologic studies.  In fact, it is 
difficult to see this coherence even within the multi-city studies that DCD4 appropriately 
emphasizes.  Even among those analyses that do estimate health effect reductions from 
reduced PM, quantitative estimates differ by at least an order of magnitude.  What is 
more striking are the inconsistencies and the sensitivity of PM effect estimates to 
modeling choices, including additivity assumptions, seasonal differences, regional 
grouping, spatial heterogeneity, lags and multiple lags, and treatment of gaseous pollutant 
confounders. 
 
That PM effect estimates are delicate is not surprising given that they are superimposed 
on much stronger effects due to concomitant weather variations, for example.  These 
widely varying, sometimes negative, PM health effect estimates are symptomatic of 
probable model shortcomings.  Given the difficulty of the task of estimating PM health 
effects, it is a matter of perspective whether one uses the term “coherent” to describe the 
diverse findings summarized in DCD4.  The perspective of my comments is to point to 
likely model deficiencies and to suggest alternatives that might lead to PM health effect 
estimates that are truly more consistent and therefore more credible. 
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