Comments on the First Draft of the EPA Policy Assessment for the Review of the Ozone National Ambient Air Quality Standards
(External Review Draft, EPA-452/P-19-002, October 2019)
Docket ID No. EPA-HQ-OAR-2018-0279

Allen S. Lefohn, Ph.D.
A.S.L. & Associates, LLC
302 North Last Chance Gulch
Suite 410
Helena, Montana 59601

December 16, 2019

Disclaimer: Dr. Lefohn’s comments contained within this document are his own; he represents only himself; no person or organization has seen these comments prior to submission to the Government Docket; and he has not been reimbursed for the time necessary to produce these comments. His comments are directed at clarifying the state-of-science evidence that is used in the First Draft of the EPA Policy Assessment for the Review of the Ozone National Ambient Air Quality Standards. His comments are submitted into the Ozone Docket (No. EPA-HQ-OAR-2018-0279) for the purpose of providing scientific clarification to the draft PA for the ozone (O₃) rulemaking activity.

About the Author

Dr. Allen S. Lefohn is currently President and Founder of A.S.L. & Associates, LLC (http://www.asl-associates.com/) in Helena, Montana. He received his Bachelor of Science degree from UCLA in 1966 and a Ph.D. in physical chemistry from the University of California Berkeley in 1969. His Ph.D. advisor was Professor George C. Pimentel, who served as deputy director of the National Science Foundation from 1977 to 1980. Dr. Lefohn, for the period 1989 – 1999, served as an Executive Editor of the internationally recognized journal Atmospheric Environment and is an Emeritus Editor of the Journal. Dr. Lefohn has published approximately 125 peer-reviewed publications, edited four books, presented numerous oral papers, and participated in panel presentations. He is the editor and author of the popular book Surface-level Ozone Exposures and Their Effects on Vegetation published by Lewis Publishers, Inc., Chelsea, MI. During a career spanning over 50 years, his research has focused on (1) developing exposure-response relationships and indices that describe the effects of O₃ on vegetation and human health, (2) investigating biological mechanisms that define the nonlinearity (i.e., weighting of the higher concentrations more than the mid- and low-level values) response to O₃ for both human health and vegetation, (3) understanding the importance of background O₃ in relation to ambient concentrations, and (4) integrating results from the EPA’s air quality database for (a) characterizing co-occurrence patterns of criteria air pollutants under ambient conditions, (b) characterizing O₃ trend patterns, and (c) designing research experiments that utilize realistic ambient exposures for assessing human health and vegetation effects. He designed the hour-by-hour concentration regimes for the Adams (2003, 2006a) experiments used in Dr. Adams’ controlled human exposure studies. Dr. Lefohn designed, with the assistance of Dr. Milan
Hazucha of the University of North Carolina, Chapel Hill, the hour-by-hour exposure regimes for the controlled human exposure study performed by Schelegle et al. (2009), which the EPA focused on for the current 70 ppb O₃ primary standard. He served as Chairman of the Science Advisory Committee of the Center for Ecological Health Research, University of California, Davis and served as a member of the Committee until January 2002. His research results associated with identifying exposure metrics for assessing effects have been used by the EPA. Between 2007 and 2015, EPA staff and CASAC considered the application of an exposure metric, the W126 exposure index, as the federal secondary standard to protect vegetation. Dr. Lefohn introduced the metric into the peer-review literature in 1987 and 1988. Currently the EPA uses the 8-h O₃ standard as a surrogate for the W126 index to protect vegetation; the EPA continues to use the W126 metric in the most current O₃ rulemaking activity as an indicator of the potential risk of ambient O₃ exposures to vegetation. He was the lead consultant scientist for the EPA in authoring the air quality characterization chapter and the vegetation exposure-response section for the Ozone Criteria Document in 1996 and contributed to the Ozone Criteria Documents in 1985 and 2006. Dr. Lefohn presented testimony in March 2015 to the House Committee on Science, Space, and Technology about background O₃. In 2015, Dr. Lefohn was a co-guest editor for the *Atmospheric Environment* special issue: Observations and source attribution of O₃ in rural regions of the Western United States. Dr. Lefohn is currently on the Steering Committee of the international research effort, Tropospheric Ozone Assessment Report (TOAR). Dr. Lefohn was the lead author (with 23 additional co-authors) of the well-cited TOAR paper, *Global Ozone Metrics for Climate Change, Human Health and Crop/Ecosystem Research*, which was published in April 2018 and is available at https://www.elementascience.org/article/10.1525/elementa.279/. Dr. Lefohn is a member of the AAAS. For many years, he served as an Adjunct Professor of Environmental Engineering at Montana Tech in Butte, Montana. Dr. Lefohn continues to be an active contributor to his research areas of interest.
Executive Summary

1. There are two key fundamental principles that are important in the O₃ rulemaking activity. The first fundamental principle is Higher Hourly Average O₃ Concentrations Should be Weighted More than Middle and Lower Values when Assessing Human Health and Environmental Effects. This principle is based on the results from the Hazucha et al. and Adams series of human health clinical studies. The result of this principle is that Haber’s Rule ($C \times t = k$, where C is the concentration of the gas (mass per unit volume), t is the amount of time necessary in order to produce a given toxic effect, and k is a constant) is not applicable for O₃. (Section 2.1)

2. The second fundamental principle is that Daily Maximum Hourly Averaged O₃ Concentrations Will Remain Well above 0 Parts per Billion (ppb) Even if all Anthropogenic Emissions Were Eliminated Worldwide. In other words, as emissions are reduced, the full spectrum of hourly average O₃ concentrations do not shift downward toward 0 ppb. This principle is supported by observations using empirical data and atmospheric chemistry/meteorological modeling results. (Section 2.2)

3. In controlled human health clinical studies, greater O₃ peak responses have been observed in step-wise and triangular (smooth increases and decreases in concentration) exposures rather than in constant concentration exposure protocols. (Section 2.1)

4. EPA recognizes the importance of the higher O₃ concentrations by implementing its Air Quality Index (AQI) that is reported across the US. Ozone pollutant specific sensitive groups are separated by 8-h daily maximum O₃ concentrations as shown below in Fig. ES-1. The higher the O₃ concentration exposures, the greater the potential effect on human health. (Section 2.3)

5. During the 2015 O₃ NAAQS rulemaking (Federal Register, 2015 – page 65358), EPA noted that both acute and chronic effects could be reduced by reducing the higher hourly average concentrations. As emissions are reduced, the higher part of the distribution of hourly average concentrations moves downwards toward the middle part of the hourly average concentration distribution. (Section 2.4)
6. For vegetation, EPA (2013, 2019a) continues to conclude that (1) O₃ effects in plants are cumulative; (2) higher O₃ concentrations appear to be more important than lower concentrations in eliciting a response; (3) plant sensitivity to O₃ varies with time of day and plant development stage; and (4) quantifying exposure with indices that accumulate the O₃ hourly concentrations and preferentially weight the higher concentrations, improves the predictive power of exposure/response models for growth and yield, in comparison with using indices based on mean and other exposure indices. Results from a “natural” experiment site in the San Bernardino National Forest, where substantial reductions over the years in the higher hourly average O₃ concentrations in the Los Angeles area, provides independent confirmation of the experimental studies for the greater importance of the higher hourly average O₃ concentrations in influencing vegetation effects. (Section 2.2)

7. Much work has been published in recent years, particularly in Europe, using flux models for O₃ assessments at the regional, national, and European scale. There remains much unknown about O₃ stomatal uptake in vegetation at larger scales and how much uptake results in an injury or damage, which depends to some degree on the amount of internal detoxification occurring with each species. The interaction between O₃ and plant tissues is driven mainly by three distinct processes: changes in external O₃ concentration, O₃ uptake, and O₃ detoxification. The diurnal pattern of detoxification does not necessarily match the diurnal patterns of external O₃ concentration and O₃ uptake (Heath et al., 2009; Wang et al., 2015; Dai et al., 2019). (Section 2.2)

8. As a result of emission reductions to attain reductions in O₃ exposures, important changes occur within the distribution of the hourly average O₃ concentrations. Clearly, the higher O₃ concentrations are reduced, but other important changes are occurring, as will be discussed below. In the US, significant reductions in O₃ levels have been experienced. Figure ES-2 below compares the 3-year average of the annual 4th highest 8-h value between 2001-2003 with 2014-2016. (Section 3.1)
As emissions are reduced, models and empirical data agree there is a compression of the higher and lower hourly average \(\text{O}_3 \) concentrations at many sites in the US. The higher individual 8-h daily maximum (MDA8) values are reduced downward toward the mid-level concentrations. Also, the lowest MDA8 values increase. As an example, for an urban-influenced site in 1985 in Jefferson County, Kentucky, there were frequent occurrences of high and low hourly average \(\text{O}_3 \) concentrations (Fig. ES-3). The site in 1985 appeared to be influenced by NO\(_x\) scavenging because of the occurrence of frequent low hourly average concentrations. The distribution of hourly average data for the same Kentucky site in 2017 is shown in Fig. ES-4. Although the site is still influenced by anthropogenic sources, the highest hourly average \(\text{O}_3 \) concentration has been reduced from 112 ppb (experienced in 1985) to 77 ppb (experienced in 2017). Also, there is a shift of the lower concentrations toward the mid-level values. The shift is associated with less titration by NO\(_x\) of the lower hourly average concentrations as reduction in NO\(_x\) emissions occurred (Lefohn et al., 1998; U.S. EPA, 2014b; Simon, 2015; Lefohn et al., 2017, 2018). The reduction of \(\text{O}_3 \) precursors results in both the high and the low concentrations shifting toward the mid-level values. With the shift upwards from the lower values to the mid-range values, daily maximum hourly averaged \(\text{O}_3 \)
concentrations will remain well above 0 parts per billion (ppb) as emissions are reduced. (Section 3.1)

Figure ES-3. Frequency distribution of the hourly average O₃ concentrations in 1985 for an urban-influenced site in Jefferson County (KY) (AQS ID 211110027) monitoring station. Source of data is from the EPA’s AQS database.
Figure ES-4. Frequency distribution of the hourly average O₃ concentrations in 2017 for an urban-influenced site in Jefferson County (KY) (AQS ID 211110027) monitoring station. Source of data is from the EPA’s AQS database.

10. The compression of the distribution of hourly average O₃ concentrations as noted above results in annual average or median concentration values increasing at some sites. For example, in Fig. ES-5 below, the annual 4th highest daily maximum 8-h concentration for 2000-2018 illustrates the trend patterns in O₃ concentrations for five sites. As expected, the southern California and the New York sites show declines over time in the 8-h metric. The three rural National Park sites at Denali National Park (AK), Voyageurs National Park (MN), and Yellowstone National Park (WY) experience 8-h O₃ exposures that are lower than the two urban sites. When the annual average is plotted (Fig. ES-6) for the same time period with the same data, the ordering of the sites from the highest to the lowest annual average concentrations appears to be counter intuitive. While the Simi Valley site in southern California experiences the highest 8-h average O₃ exposures of the 5 sites, the annual average concentration for the southern California site is comparable to values for the three rural National Park sites. The New York site experiences the lowest exposures when the annual average metric is used. Clearly, the ordering of the sites from highest to lowest exposures observed when using the 8-h metric is much different than the ordering when the annual average index is used. The increase in the annual average concentration values, even though emissions are being reduced, is associated with the low end of the distribution increasing due to less titration by NOₓ. The three National Park sites in the figures do not experience high 8-h average concentration values comparable to many of the urban sites in the US. The high-elevation Yellowstone National Park site experiences much higher annual average values than any of the remaining 4 sites. The hourly average O₃ concentrations experienced at Yellowstone National Park (WY) are influenced by frequent occurrences of stratospheric tropospheric transport to the surface (STT-S), which is a naturally occurring process that contributes to background O₃ levels (Lefohn et al., 2001, 2011, 2012, 2014). When nonparametric statistics are applied, no trend has been observed at Yellowstone National Park using the 4th highest daily maximum 8-h average concentration metric. (Section 3.1)
Figure ES-5. The annual 4th highest daily maximum 8-h average O\textsubscript{3} concentration for the period 2000-2018 for Simi Valley, CA (061112002), Queens New York, NY (360810124), Denali National Park, AK (020680003), Voyageurs National Park, MN (271370034), and Yellowstone National Park, WY (560391011). Source of data is from the EPA’s AQS database.
Figure ES-6. The annual mean of the hourly average O$_3$ concentrations for the period 2000-2018 for Simi Valley, CA (061112002), Queens New York, NY (360810124), Denali National Park, AK (020680003), Voyageurs National Park, MN (271370034), and Yellowstone National Park, WY (560391011). Source of data is from the EPA’s AQS database.

11. During the 2015 O$_3$ NAAQS rulemaking (Federal Register, 2015 – page 65358), EPA noted that both acute and chronic effects could be reduced by reducing the higher hourly average concentrations. One does not have to select an annual average or seasonal average concentration metric to estimate “chronic” (i.e., long-term) effects from O$_3$ exposures. Based on empirical data, annual average concentrations increase as emissions are reduced. The biologically important higher hourly average O$_3$ concentrations are reduced as emissions are reduced. Rather, investigators performing long-term health research studies might wish to consider that the long-term effects may be associated with repeated acute exposures. A sigmoidal weighting scheme for hourly average O$_3$ concentrations might be relevant for those who wish to develop daily O$_3$ exposure metrics that could be used to integrate cumulative exposures over time. (Section 2.4)

12. As emissions are reduced, besides the compression of the high and low concentrations toward the mid-level values, models predict that the highest concentrations, which normally have occurred in the past during the summer months, shift at some sites in the US from the summer months toward the March-June months. Besides modeling results,
the data in the EPA’s AQS database indicate there are sites where maximum concentrations have shifted from summer to spring months. There are also sites across the US where the highest O₃ exposures occur in the spring independent of emission reductions. These observations have important ramifications for assessing the validity of background O₃ modeling estimates. (Sections 3.1.2 and 3.2.9)

13. At sites influenced by natural processes involving the stratosphere (i.e., stratospheric-tropospheric transport to the surface: STT-S contributions), there is a tendency for the highest O₃ exposures to occur during the spring months. However, some sites (e.g., high-elevation sites) may experience STT-S contributions throughout the year. This also has important ramifications for assessing the validity of background O₃ modeling estimates. (Section 3)

14. In both the draft ISA and the draft PA, EPA appears to be mainly focused on estimating how much of current O₃ levels can be attributed to sources other than U.S. anthropogenic sources on days when ambient levels exceed the O₃ NAAQS. In other words, how much does background O₃ contribute on the days when ambient levels are highest? (Section 3)

15. In the draft ISA, EPA states that background O₃ seasonal and monthly means of hourly data are also included because longer averaging times are relevant for assessments of human health and ecological effects. This statement is not accurate. In many cases, assessment of human health and ecological effects are not based on longer averaging times. For the vegetation related W126 exposure index, which is a cumulative rather than an average exposure metric, hourly average concentrations are weighted using a sigmoidal function and then accumulated over a specific period for assessing risk. Hourly average background O₃ concentrations contribute to the observed concentrations and therefore, contribute to the cumulative risk. For some human health risk assessments, daily 8-h average concentrations are used at times in a time series. Daily maximum 8-h average concentrations contain background O₃ concentrations, which contribute to the estimated human health risk. (Section 3)

16. The authors note that the term U.S. background (USB) is used to assess background O₃. No clear reason is provided in either the draft ISA or the draft PA why the authors chose to define background O₃ using the USB (i.e., zero-out) approach rather than other modeling methodologies. Simplicity of interpretation and consistency with previous analyses appear to be the reasons that USB rather than apportionment based USBAB was used in the modeling described in the draft PA. A key point made in the draft ISA (page 1-52) is that the difference between USB and USBAB is small in remote areas most strongly affected by USB sources, but can be substantial in urban areas strongly affected by anthropogenic sources that influence both production and destruction of O₃ (Dolwick et al., 2015). The selection of USB rather than apportionment-based US background (USBAB), as well as not performing bias adjustments to the USB estimates, may have important ramifications on the adequacy of the background O₃ modeling results presented in the draft PA. (Section 3)
17. On Page 1-55 in the draft ISA (EPA, 2019a), the authors note that the 2013 Ozone ISA (U.S. EPA, 2013) reported higher seasonal mean USB and NAB concentration estimates in spring than in summer for most regions of the U.S, and that these results are consistent with earlier modeling estimates. EPA notes that while some new results are consistent with this pattern, other results suggest that summer USB O\textsubscript{3} concentrations can be comparable to or greater than spring concentrations. The draft ISA did not resolve the conflicting conclusions about when seasonal mean background O\textsubscript{3} is greatest. Data in the EPA’s AQS database indicate there are sites where maximum concentrations have shifted from summer to spring months. There are also sites across the US where the highest O\textsubscript{3} exposures occur in the spring independent of emission reductions. At some National Park Service (NPS) sites, the highest O\textsubscript{3} exposures across the US occur during the springtime (March to mid-June). The EPA (2014c, page 7A-12) provided the highest 3-month W126 values and the timeframe corresponding to those W126 exposures for the Parks for the period 2006-2010. Several of the O\textsubscript{3} monitors in the Parks experienced their highest W126 exposures during the spring months (defined as March, April, May or April, May, June) period. In the 2015 NAAQS rulemaking (Federal Register, 2015 – page 65416), the EPA determined that the lengthening of the O\textsubscript{3} monitoring seasons in 32 states and the District of Columbia was appropriate. The Agency indicated that ambient O\textsubscript{3} concentrations in these areas could approach or exceed the level of the NAAQS, more frequently and during more months of the year compared with the length of the O\textsubscript{3} seasons prior to 2015. The EPA described the results of its analysis (Rice, 2014) and extended the seasons for specific states and the District of Columbia. In Section 3.2.8, additional material is provided that documents the March-June occurrences of the highest O\textsubscript{3} exposures. This exposure pattern is important for validating model performance estimating background O\textsubscript{3} concentrations. I suggest that the authors of the draft ISA, as well as the draft PA, evaluate O\textsubscript{3} data in the EPA’s AQS database and quantify when the highest O\textsubscript{3} exposures occur at various types of sites. There continues to be strong evidence, as supported in the literature, that background O\textsubscript{3} across the US is highest at many sites during the springtime (including into the month of June) and background O\textsubscript{3} is an important contributor at many high-elevation sites throughout the year. (Sections 3.2.4 and 3.2.8)

18. The USB modeling results described in the draft PA (EPA, 2019b) indicate the following seasonal patterns: The Natural contribution has a single maximum in late summer in the West, whereas, in the East there is evidence of two peaks— the largest in late Spring and a second peak in early Fall. (page 2-44). The previous conclusion in the 2014 PA (EPA, 2014a) and the 2013 ISA (EPA, 2013, in section 3.4) was that background O\textsubscript{3} was greatest over the US during the spring and early summer (i.e., June). The different patterns in the West noted in the draft PA did not agree with the patterns described by Dolwick et al. (2015) and Lefohn et al. (2014). The difference may be attributable to the lack of bias adjustment in the EPA model described in the draft PA. The draft PA noted that bias adjustment was not performed in the modeling described in the draft PA. Lefohn et al. (2014) and Dolwick et al. (2015) performed bias adjustments. In their analyses, Lefohn et al. (2014) noted that model performance at low-elevation sites tended toward larger under prediction biases in the cool months (i.e., November-April) and larger over prediction biases in warm months (June-October), particularly for sites in the southern
and eastern US. I would suggest that the investigators apply a bias adjustment to the model described in the draft PA.

19. Empirical data indicate that as emission reductions occur across the US, the higher MDA8 concentrations shift at many O$_3$ monitoring sites from the summer toward the March-June months. In addition, as emission reductions occur, the distribution of hourly average concentrations shift from the higher values toward the middle values and the lower values shift upward toward the middle values. There is a compression of the distribution of hourly average O$_3$ concentrations. In addition, as emission reductions occur, background O$_3$ concentrations increase their percentage in the observed total O$_3$ concentration with the result that the compressed distribution of hourly average concentrations based on empirical data begins to resemble at some locations the distribution of background O$_3$. Hopefully, the application of a bias adjustment to the estimated modeled USB estimates described in the draft PA results in patterns that resemble the background O$_3$ patterns published previously in the literature, as well as the patterns observed in the empirical data as emission reductions have occurred. If bias adjustments to the model do not change the seasonal patterns described for the USB model in the draft PA, then further model sensitivity analyses are recommended. The patterns described earlier that are derived from empirical data (i.e., the compressed distributions and the seasonal shift from the summer months to the March-June period) provide an opportunity to assess the adequacy of models to estimate USB, USB$_{AB}$, or EIB.

20. The draft ISA attributes increasing trend patterns observed at high-elevation western U.S. sites to long-range transport from Asia. There is a pattern of inconsistency on the influence of long-range transport from Asia on western high-elevation O$_3$ monitoring sites. Long-range transport from Asia has not influenced trend patterns at all western US high-elevation O$_3$ monitoring sites. Not all high-elevation western U.S. sites have exhibited statistically significant trends during the springtime, when transport is expected to be highest from Asia. An evaluation of trend patterns of high-elevation western U.S. sites during the springtime, using the 4th highest daily maximum 8-h concentration exposure metric, shows that some sites have not experienced increasing trends over the period 2000-2014. I suggest that the authors modify their conclusions currently in the draft ISA document about the impact of long-range transport on western high-elevation O$_3$ monitoring sites, as well as anticipated changes as a result of emission reductions in Asia. (Section 3.2.6)

21. Depending upon the specific monitoring sites, background O$_3$ contributes varying amounts to the higher hourly average O$_3$ concentrations. For example, the high-elevation Yellowstone National Park site in Wyoming is dominated by background O$_3$ throughout the year with minor anthropogenic contributions (Lefohn et al., 2014). In Fig. ES-7 below, the relative comparison of background O$_3$ levels (noted by blue) to anthropogenic (noted by red) within each concentration level shows that background contributes greater than 80% across all ranges of concentrations. In comparison, Fig. ES-8 illustrates that for the Los Angeles area, a site heavily influenced by anthropogenic emissions, background O$_3$ contributes less than 40% at the higher hourly average concentrations. (Section 3.2.5)
Figure ES-7. Average relative contributions of current hourly background (blue) and anthropogenic O₃ (red) for Yellowstone NP (WY) (AQS ID 560391011) in 2006. (Source: Lefohn et al., 2014).
22. In the draft PA, analyses are presented that estimate exposure and risk for simulated populations in eight study areas. The eight study areas represent a variety of circumstances about population exposure to short-term concentrations of O₃ in ambient air. The eight study areas range in total population size from approximately two to eight million and are distributed across the US in seven different NOAA climate regions: The Northeast, Southeast, Central, East North Central, South, Southwest, and West. In Figs. ES-9 through E-15, total observed O₃ concentrations, USBAB estimates (data provided by the EPA), and STT-S counts are presented for 2007 for seven of the eight sites (i.e., Atlanta, Boston, Dallas, Detroit, Philadelphia, Sacramento, and St. Louis) used by the EPA in its risk analyses presented in the draft PA. In the figures, gaps (i.e., the difference between the observed total O₃ (noted by the black line) and USBAB concentrations (noted by the green line)) occur, indicating the apparent influence of anthropogenic sources. I would suggest that the draft PA provide examples of the time series for 2016 for the observed and USB concentrations for the eight sites used in the draft PA risk assessment (Atlanta, Boston, Dallas, Detroit, Philadelphia, Phoenix, Sacramento, and St. Louis).

Figure ES-8. Average relative contributions of current hourly background (blue) and anthropogenic O₃ (red) for the Los Angeles (CA) (AQS ID 060719004) area in 2006. (Source: Lefohn et al., 2014).

Figure ES-9. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USBAB) 8-h daily maximum concentrations for a site in Atlanta, Georgia (AQS ID 132470001) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O₃ values. Daily USBAB 2007 values provided by
the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.

Figure ES-10. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB\textsubscript{AB}) 8-h daily maximum concentrations for a site in Boston, Massachusetts (AQS ID 250092006) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O\textsubscript{3} values. Daily USB\textsubscript{AB} 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
Figure ES-11. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB\textsubscript{AB}) 8-h daily maximum concentrations for a site in Dallas, Texas (AQS ID 481130087) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O\textsubscript{3} values. Daily USB\textsubscript{AB} 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
Figure ES-12. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB\textsubscript{AB}) 8-h daily maximum concentrations for a site in Detroit, Michigan (AQS ID 261630019) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O\textsubscript{3} values. Daily USB\textsubscript{AB} 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.

Figure ES-13. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB\textsubscript{AB}) 8-h daily maximum concentrations for a site in Philadelphia, Pennsylvania (AQS ID 420170012) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O\textsubscript{3} values. Daily USB\textsubscript{AB} 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
Figure ES-14. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USBAB) 8-h daily maximum concentrations for a site in Sacramento, California (AQS ID 060670012) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O₃ values. Daily USBAB 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
Figure ES-15. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB\textsubscript{AB}) 8-h daily maximum concentrations for a site in St. Louis, Missouri (AQS ID 291831002) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O\textsubscript{3} values. Daily USB\textsubscript{AB} 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
1. Introductory Comments

The first drafts of the EPA’s Integrated Science Assessment for Ozone (ISA) (EPA, 2019a) and Policy Assessment (PA) (EPA, 2019b) documents were issued on September 25, 2019 and October 31, 2019, respectively. On December 2, 2019, I submitted my comments on the EPA draft Integrated Scientific Assessment Document (Lefohn, 2019) to the Docket. During the last O₃ rulemaking activities, the first drafts of the ISA, Health Risk and Exposure Assessment (HREA)/Welfare Health Risk and Exposure Assessment, and PA were issued in March 2011, July 2012, and August 2012, respectively. The final versions of the ISA, HREA/Welfare REA, and PA were published in February 2013, August 2014, and August 2014, respectively. The compressed schedule during this rulemaking cycle has resulted in the simultaneous preparation of the ISA (EPA, 2019a) and PA (EPA, 2019b). This has resulted in little time being available to integrate key concepts presented in the ISA to be properly evaluated by the general public, as well as policy makers and various stakeholders (e.g., environmental groups and industry advocates). Therefore, key concepts developed in the ISA by the EPA have not been exhaustively reviewed and commented upon before being integrated into the EPA’s draft PA.

The PA, when finalized, presents an evaluation, for consideration by the EPA Administrator, of the policy implications of the currently available scientific information, assessed in the ISA, any quantitative air quality, exposure or risk analyses based on the ISA findings, and related limitations and uncertainties. The role of the PA is to help “bridge the gap” between the Agency’s scientific assessment and quantitative technical analyses, and the judgments required of the Administrator in determining whether it is appropriate to retain or revise the NAAQS. It is important that uncertainties associated with key aspects within the PA be minimized.

Because both the draft ISA (EPA, 2019a) and the draft PA (EPA, 2019b) are closely linked, my comments on the draft PA will also reference material in the draft ISA. I believe it is important that the reader understand how specific issues that require further refinement in the draft PA are related to materials presented in the draft ISA. Both documents are tightly bound together and a change in one may result in a change in the other.

1.1 Units of Concentration

In previous ISA and PA documents, O₃ metrics (e.g., annual 4th highest 8-h daily maximum average O₃ concentration and the vegetation W126 cumulative exposure index) have typically been developed using the mixing ratio unit of parts per million (ppm) or parts per billion (ppb) which, in the case of O₃, refers to the number of O₃ molecules per million or billion moist, ambient air molecules in a fixed volume. The unit of the W126 metric is ppm-hrs or ppb-hrs. However, as noted in the draft ISA (EPA, 2019a), in the atmospheric science literature, ppm and ppb are not considered concentration units. Some atmospheric scientists have suggested that when referencing an O₃ observation, that the term mole fraction of O₃ in air, expressed in SI units of nmol mol⁻¹ be used. To respond to this concern, the draft ISA (EPA, 2019a) states the following on page 1-3:
Ozone concentration metrics are generally based on measurements or estimates expressed as a volume-volume mixing ratio, with units of parts per million (ppm) or parts per billion (ppb). Technically, ppm and ppb are not concentration units, which are defined as moles per unit volume and depend on temperature and pressure. This distinction is generally acknowledged in the atmospheric science literature. In contrast, the term mixing ratio is rarely used in the literature on health and vegetation effects but is instead usually substituted with the term concentration, understood to be more broadly interpreted as the amount of a substance in a fluid without distinguishing units. For this reason, the term concentration is generally used instead of mixing ratio in this document to maintain consistency with its use in the health and ecological effects literature. Mixing ratio is still used in the more technical discussions of atmospheric sources and chemistry in Section 1.3 and Section 1.4.

I would suggest that this wording be modified. The current O₃ standard is in units of ppm. During the peer-review process of the Lefohn et al. (2018) paper, there was a suggestion by the reviewers that the use of the units ppm and ppb were not appropriate and that we should eliminate entirely the word “concentration.” The reviewers suggested we use the terminology mole fraction. Some of my coauthors and I had serious concerns that the (1) use of the unit mole fraction and (2) elimination of the word “concentration” from our paper would compromise our ability to communicate with researchers in the biological area, regulators, and policymakers.

After much discussion, the authors and editor reached an agreement that the following wording, which was inserted into Section 1.2 (Ozone metrics in the context of TOAR) of Lefohn et al. (2018), was acceptable:

In TOAR, specific units are used when describing ozone observations and levels of exposure. When referencing an ozone observation, which is measured from moist, ambient air, TOAR follows World Meteorological Organization guidelines (Galbally et al., 2013) and uses the mole fraction of ozone in air, expressed in SI units of nmol mol⁻¹. Ozone metrics (e.g., annual 4th highest 8-h daily maximum average ozone value) have typically been developed using the mixing ratio unit of parts per million (ppm) or parts per billion (ppb) which, in the case of ozone, refers to the number of ozone molecules per million or billion moist, ambient air molecules in a fixed volume. In reference to units of nmol mol⁻¹ and ppb, Galbally et al. (2013) states: “For all practical purposes the two quantities can be used interchangeably and without distinction”. To maintain consistency with the ozone human health and vegetation research community, TOAR uses units of ppb or ppm (or ppb-hrs or ppb-h for cumulative indices) when discussing ozone in terms of an exposure metric. Although the usage of the word “concentration” without specifying atmospheric conditions when referring to mole fraction (nmol mol⁻¹) and mixing ratios (ppb) is technically incorrect, the vast amount of literature on ozone health and vegetation effects uses the conventional term "concentration" when referring to an ozone level. This common usage does not distinguish between mixing ratio metrics or true concentrations metrics such as µg m⁻³. To
enhance the link to the health and vegetation effects literature and national and international policy, as well as to facilitate the understanding of this paper by health and vegetation effects scientists, the word “concentration” is used when appropriate.

I have provided the wording above as an example of the wording that might help clarify why ppb and ppm units are used in the draft ISA and draft PA.

1.2 Purpose of the Policy Assessment (PA) Document

As noted earlier, the Policy Assessment for the Review of the Ozone National Ambient Air Quality Standards, External Review Draft (PA), when final, presents an evaluation, for consideration by the EPA Administrator, of the policy implications of the currently available scientific information, assessed in the ISA, any quantitative air quality, exposure or risk analyses based on the ISA findings, and related limitations and uncertainties. As indicated earlier, the role of the PA is to help “bridge the gap” between the Agency’s scientific assessment and quantitative technical analyses, and the judgments required of the Administrator in determining whether it is appropriate to retain or revise the NAAQS.

The development of the PA is also intended to facilitate advice to the Agency and recommendations to the Administrator from an independent scientific review committee, the Clean Air Scientific Advisory Committee (CASAC), as provided for in the Clean Air Act (CAA). The CASAC is to advise on subjects including the Agency’s assessment of the relevant scientific information and on the adequacy of the current standards, and to make recommendations as to any revisions of the standards that may be appropriate. In the past, the EPA generally made available to the CASAC and the public one or more drafts of the PA for CASAC review and public comment. However, it is unclear whether additional drafts will be provided for review.

As noted on page 1-2 of the PA, the document is designed to assist the Administrator in considering the currently available scientific and risk information and formulating judgments regarding the standards. The final PA will inform the Administrator’s decision in this review. Beyond informing the Administrator and facilitating the advice and recommendations of the CASAC, the PA is also intended to be a useful reference to all parties interested in the review of the O₃ NAAQS. In these roles, it is intended to serve as a source of policy-relevant information that supports the Agency’s review of the O₃ NAAQS, and it is written to be understandable to a broad audience. As indicated in my suggestion in Section 1.1 above, I have provided wording that is understandable to a broad audience that might help clarify why ppb and ppm units are used in the draft ISA and draft PA.

An important challenge of the PA is how to integrate some of the results in the current draft with those from the 2013 Ozone PA and place all of these results into perspective with key findings contained within previous O₃ rulemaking documents (e.g., 2006 AQCD for Ozone and Related Photochemical Oxidants (U.S. EPA, 2006), the 2007 Staff Paper (U.S. EPA, 2007), the 1996 AQCD and Staff Paper for Ozone and Other Photochemical Oxidants (U.S. EPA, 1996a,
b), the 1986 AQCD for ozone (U.S. EPA, 1986) and its Supplement (U.S. EPA, 1986b), and the 1978 AQCD for Ozone and Other Photochemical Oxidants (NAPCA, 1978). It is extremely important that the PA provide its readers with a firm grasp of the foundations on which past scientific decisions were made. If this is not accomplished, then it is possible that the rationale for past scientific findings may be lost to history and the latest results provided greater weight than the firm scientific findings of the past. What is important here is that the latest results are compared to past findings and where disagreement is found, the PA devotes space to discussing the ramifications of the disagreement. In some cases, the draft PA has not focused sufficiently on the disagreement with past results and has not critically evaluated possible scientific reasons for the disagreement. I will discuss specific examples in detail later in my comments.

As indicated in my ISA comments (Lefohn, 2019), I believe two key scientific fundamental principles help guide the form and level of the two Federal O₃ standards (i.e., health and welfare) in the United States. The first fundamental principle, based on (1) controlled human exposure studies and (2) laboratory and empirical vegetation experiments, states that higher hourly average O₃ concentrations should be weighted greater than the middle and lower values when assessing human and environmental effects. Without this key scientific fundamental principle, the selection of O₃ exposure indices for assessment purposes would be based on the personal choice of the investigator rather than based on biologically relevant metrics. Lefohn et al. (2018) discuss in detail the rationale for the selection of specific exposure metrics for assessing human health and vegetation. The second fundamental principle, linked to natural processes (e.g., stratospheric intrusions, lightning, wildfires, and soil emissions), states that daily maximum hourly averaged O₃ concentrations will remain well above 0 parts per billion (ppb) even if all anthropogenic emissions were eliminated worldwide. This fundamental principle means that if global anthropogenic emissions were eliminated entirely, hourly maximum daily surface O₃ concentrations would remain well above zero ppb and cannot attain the unreasonable goal of reaching a daily maximum concentration of 0 ppb. At most locations in the world, it is not possible to attain hourly average O₃ levels on a sustained basis near 0 ppb. This second fundamental principle has profound implications for those who develop models that predict mortality and morbidity effects at O₃ levels below natural background levels. In the following comments below, I discuss the two very important fundamental principles and its relation to the O₃ rulemaking process.

2. Fundamental Principle No. 1: Higher hourly average ozone concentrations should be weighted more than middle and lower values when assessing human and environmental effects

2.1 Human Health

For the 2015 O₃ rulemaking, the US EPA noted that higher O₃ concentrations have a proportionately greater impact than lower concentrations and therefore, are an important consideration in determining ozone’s health impact. Important published results by Hazucha et al. (1992) and Adams (2003; 2006a, 2006b) formed the scientific foundation for the focus on higher O₃ concentrations. The work utilized ambient-type elevated concentrations and compared them to constant concentration exposures with the same concentration × time product to assess
Commenting on these earlier results, Lefohn, Hazucha, Shadwick, and Adams (Lefohn et al., 2010) concluded that higher O$_3$ concentrations are important in FEV$_1$ responses and that the effect is cumulative based on exposure. EPA notes in the draft ISA (page 3-11) that greater peak responses have been observed in stepwise and triangular (smooth increases and decreases in concentration) exposures versus constant concentration exposure protocols. I suggest that the EPA include the Hazucha et al. (1992) paper in its discussion in this section because their work was one of the first to identify the importance of weighting the higher hourly average concentrations in FEV$_1$ response. The Hazucha et al. (1992) effort, although applying hourly values above the levels currently considered for the primary Ozone NAAQS, represents an important part of the evolution of thinking in this important research area. Conclusions of these important papers are as follows:

Hazucha et al. (1992)

Several recent studies have suggested that in estimating exposure dose (O$_3$ concentration [C] × exposure time [T] × ventilation [V]), O$_3$ concentration needs to be weighted more heavily than either ventilation or duration of exposure in the estimates. Our observations demonstrate that the product of C(mean) × T × V is not a sufficient index of exposure.

Adams (2003, 2006a)

These results support previous evidence that O$_3$ concentration has a greater singular effect in the total inhaled O$_3$ dose than do V$_E$ and exposure duration.

Lefohn and Hazucha (2007)

Results from controlled laboratory exposures of human volunteers indicate that higher ozone (O$_3$) hourly average concentrations elicit a greater effect on hour-by-hour physiologic response (i.e., forced expiratory volume in 1 s [FEV$_1$]) than lower hourly average values, which implies a nonlinear dose–response relationship. To date, most of the empirical models derived from laboratory human experiments of concentration dose–response have been based on a constant exposure regime. The relationship between O$_3$ and spirometric lung function decrements is not linear. In attempting to derive the O$_3$ exposure–response relationship, we urge caution in curve-fitting exercises that focus on identifying the “best-performing” mathematical functions. Some of the functions identified may not be physiologically relevant. We recommend that investigators focus on identifying models that have biological plausibility and apply these models with data that are derived from variable exposure regimes. The use of a logistic (i.e., sigmoid) model appears to be biologically justified. It is continuous, does not require the identification of a population threshold concentration, and deals with plateau considerations at the high end of the distribution of exposures.

Lefohn, Hazucha, Shadwick, and Adams (2010)
Controlled human laboratory studies have shown that there is a disproportionately greater pulmonary function response from higher hourly average ozone (O$_3$) concentrations than from lower hourly average values and thus, a nonlinear relationship exists between O$_3$ dose and pulmonary function (FEV$_1$) response. We have reanalyzed data from five controlled human response to O$_3$ health laboratory experiments as reported by Hazucha et al. (1992), Adams (2003, 2006a, 2006b), and Schelegle et al. (2009). Our findings indicate a common response pattern across most of the studies. Schelegle et al. (2007) introduced a concept of a phased ventilatory response associated with O$_3$ exposures based on the frequency of breathing (fB) endpoint. In a subsequent paper, Schelegle et al. (2009) applied this concept to include an FEV$_1$ endpoint. Based on VAR/STW(i.e., variable/stepwise) FEV$_1$ response pattern, we have used a similar approach and identified three FEV$_1$ phases associated with exposure to VAR/STW O$_3$ concentrations: (i) a 2 to 3-h initial “induction phase” in response, (ii) followed by the onset of a statistically significant FEV$_1$ nonlinear “response phase,” and (iii) a final “reversal phase” (i.e., change in direction of the slope of the FEV$_1$ decrement towards baseline as the hourly average O$_3$ concentration is decreased). The first phase noted by Schelegle et al. (2009) more or less coincides with our Phase 1. Their second and third phases correspond to our second phase. We have added a new third phase, the “reversal phase,” which was absent in Schelegle et al. ’s (2009) study. Results from these controlled human laboratory studies applying ambient pattern exposures (Adams 2003, 2006a, 2006b; Hazucha et al., 1992) illustrate the importance of the higher hourly average O$_3$ exposures compared to the lower hourly average values and a nonlinear relationship between O$_3$ dose and FEV$_1$ pulmonary function (Hazucha & Lefohn 2007).

Lefohn et al. (2018)

Controlled human exposure studies that explore induced decrements in lung function indicate that the higher ozone concentrations should carry greater weight than the moderate and lower concentrations (Hazucha and Lefohn, 2007; Lefohn et al., 2010b). Such studies vary the (1) intensity, duration and frequency of exercise from light to very heavy load on a treadmill or a bicycle ergometer to increased minute ventilation, (2) duration of exposures over 6.6-h and 8-h periods, and (3) application of varying hour-by-hour concentrations versus constant concentrations. In the 1980s and early 1990s, US EPA investigators published the initial studies on the effects of 6.6-h exposures on healthy humans (Folinsbee et al., 1988; Horstman et al., 1990). In 1992, the first 8-h exposure study of ozone on lung function comparing the results using a constant concentration and variable concentration profile that mimicked typical diurnal patterns existing under ambient conditions was published (Hazucha et al., 1992). Both the constant and the variable concentration regimes used the same effective dose although the variable regime included exposure to high hourly average ozone concentrations. Compared to the square-wave exposure profile, the hourly lung function decrements in pulmonary function of subjects exposed to the variable concentration regime were substantially greater one hour after the peak exposure,
with the conclusion that the higher concentrations should be weighted more than the mid- and low-level values. Several later studies (Adams 2003, 2006a, 2006b) employing either variable (continually changing) or stepwise (increasing or decreasing from one hour to the next) exposure profiles confirmed the results reported by Hazucha et al. (1992). These studies showed that equivalent doses (varying versus constant exposures) produced different responses which depended on the applied hourly ozone concentration pattern.

Page 3-11 in the draft ISA, the EPA notes:

Although greater peak responses have been observed in step-wise and triangular (smooth increases and decreases in concentration) exposures versus constant concentration exposure protocols, similar FEV\textsubscript{1} responses have been reported at 6.6 hours regardless of the exposure protocol (i.e., constant versus step-wise) for average ozone exposures to 60, 80, and 120 ppb (Adams, 2006, 2003a; Adams and Ollison, 1997).

Although this statement is accurate based on documenting the FEV\textsubscript{1} response after 6.6 hours, compared to the square-wave exposure profile, the hourly lung function decrements in pulmonary function of subjects exposed to the variable concentration regime were substantially greater one hour after the peak exposure. The fact that greater instantaneous FEV\textsubscript{1} decrements occurred in the variable exposure regimes means that the 8-h standard may not be as protective as intended. For the Adams (2003, 2006a) studies, I designed the hour-by-hour O\textsubscript{3} concentration regimes.

The hourly averaged concentrations were designed to increase in an “almost” symmetric manner. For the 80 ppb step-wise exposure, the peak hourly average concentration occurred at 4th hour and then began to decrease. The result was that the three FEV\textsubscript{1} phases described in Lefohn et al. (2010) (Lefohn, Hazucha, Shadwick, and Adams), associated with exposure to the variable/stepwise O\textsubscript{3} concentrations occurred. The first phase is the 2 to 3-h initial “induction phase” in response. The second phase is the onset of a statistically significant FEV\textsubscript{1} nonlinear “response phase,” and the final phase is the “reversal phase” (i.e., change in direction of the slope of the FEV\textsubscript{1} decrement towards baseline as the hourly average O\textsubscript{3} concentration is decreased). Note that although the “reversal phase” occurred, the FEV\textsubscript{1} response remained statistically significantly different than the control at the end of the 6.6-hour experiment for several of the exposure regimes applied. The reversal phase was noted in the draft ISA and was presented as evidence supporting the statement on page 3-11 of the ISA that “…similar FEV\textsubscript{1} responses have been reported at 6.6 hours regardless of the exposure protocol (i.e., constant versus step-wise).” However, as noted above, compared to the square-wave exposure profile, the hourly lung function decrements in pulmonary function of subjects exposed to the variable concentration regime were substantially greater one hour after the peak exposure and may indicate that the 8-h average form of the O\textsubscript{3} standard may need to be revisited in the future.

What we do know from the Hazucha et al. (1992), Adams (2003, 2006a) results is that "controlled human laboratory studies have shown that there is a disproportionately greater pulmonary function response from higher hourly average ozone (O\textsubscript{3}) concentrations than
from lower hourly average values and thus, a nonlinear relationship exists between O₃ dose and pulmonary function (FEV₁) response” (Lefohn, Hazucha, Shadwick, and Adams, 2010). The implication of this is that a simple cumulative calculation of C x T (concentration multiplied by time) is not a valid determination of cumulative O₃ exposure. For understanding cumulative O₃ effects on FEV₁, in future controlled human health laboratory experiments, I believe there should be a differential weighting of the hourly average concentrations over the time of exposure, as well as a better understanding of the “induction” and “reversal” phases.

During the 2015 rulemaking O₃ activity, one controlled human exposure experiment published was the key study that the EPA focused on for the selection of the primary O₃ standard. While other controlled human exposure and epidemiological studies were also available, the EPA decided to focus on the Schelegle et al. (2009) study for setting the primary O₃ standard. Professor Milan Hazucha and I designed the hour-by-hour exposure regimes for the Schelegle et al. (2009). However, before discussing why this single controlled human exposure experiment outweighed the other studies, I would like to describe the history on the science that provides the context for why, among all the studies in the published literature, this single experiment formed the basis for the current level of the O₃ standard to protect human health.

When evaluating the epidemiological and controlled human exposure study results, that the higher O₃ concentrations were an important consideration (Federal Register (2015 – page 65354). The EPA (Federal Register, 2015 – page 65343) agreed with the conclusions of the Agency’s Policy Assessment Report (EPA, 2014a) that controlled human exposure studies provided the most certain evidence indicating the occurrence of health effects in humans following exposures to specific O₃ concentrations. Specifically, the Agency recognized that the effects reported in controlled human exposure studies were due solely to O₃ exposures. In contrast, epidemiological studies incorporate confounding factors that may have obscured the cause-effect relationship.

The EPA noted that controlled human exposure studies report the combination of lung function decrements and respiratory symptoms in healthy adults engaged in intermittent, moderate exertion following 6.6 hour exposures to concentrations as low as 72 ppb (based on Schelegle et al., 2009), and lung function decrements and pulmonary inflammation following exposures to O₃ concentrations as low as 60 ppb (based on Kim et al., 2011) (Federal Register, 2015 – page 65343). However, the EPA also noted that a level of 60 ppb is below the lowest concentration where the combined occurrence of respiratory symptoms and lung function decrements were observed (i.e., 72 ppb), a combination judged adverse by the American Thoracic Society according to the EPA (Federal Register, 2015 – page 65357). The EPA, noting the Kim et al. (2011) findings, had less confidence that health effects would occur below an O₃ concentration of 72 ppb. Thus, only one controlled human exposure study (i.e., Schelegle et al., 2009) informed the EPA’s decision as to the level of the standard.

For the epidemiological studies, the EPA noted that the interpretation of studies’ results was complicated by the presence of co-occurring pollutants or pollutant mixtures. In addition, the EPA placed less weight on epidemiologic-based risk estimates because of key uncertainties about (1) which co-pollutants was responsible for any health effect observed, (2) the heterogeneity in effect estimates between locations, (3) the potential for exposure measurement
errors, and (4) uncertainty in the interpretation of the shape of concentration-response functions for O₃ concentrations in the lower portions of ambient distributions. As noted in the Health Risk and Exposure Assessment (HREA) (EPA, 2014b) with respect to the epidemiological studies, not differentially weighting the concentration-response functions at higher O₃ concentrations greater than the mid- and low-level values resulted in small differences in the estimates of mortality and morbidity risks as a theoretical effort was made to impose more stringent standards. This occurred because as shown by EPA’s modeling, as well as our and other researcher’s trend results, as emissions are reduced to meet lower standards, the high end of the concentrations shifts downward (i.e., reducing mortality) but the low end of the distribution of concentrations shifts upward (i.e., increasing mortality), resulting in a small net benefit. Because of the limitations in the epidemiology studies, the EPA did not use these studies to set the proposed range for the level of the standard except for the margin of safety consideration.

As described above, the EPA (Federal Register, 2015 – page 65357) had less confidence that adverse effects would occur following exposures to O₃ concentrations below 72 ppb. With the findings of the epidemiological studies being discounted because of numerous uncertainties affecting the interpretation of the results, the EPA relied on a single study to focus on the setting of the 2015 O₃ standard. The EPA went on to conclude that a standard level as high as 70 ppb, which CASAC concluded could be supported by the scientific evidence, could reasonably be judged to be requisite to protect public health with an adequate margin of safety (Federal Register, 2015 – page 65363).

2.2 Vegetation

For vegetation, EPA reached the conclusion in 2015 that the higher concentrations should be weighted greater than mid and lower values (Federal Register, 2015 – page 65373). This conclusion coupled with the cumulative nature of the effects of O₃ on vegetation is the basis for the EPA recommending the W126 exposure index (Lefohn and Runeckles, 1987; Lefohn et al., 1988) for assessing vegetation risk. I would recommend that similar to the draft ISA (page IS-19) that the draft PA point out to the reader that the W126 metric was introduced and discussed in Lefohn et al. (1988) and that the concept for the sigmoidal weighting appeared in Lefohn and Runeckles (1987). I believe it would be helpful to the reader that he/she understand from where in the literature the W126 concept came.

The interest in identifying O₃ exposure regimes for eliciting adverse effects began earlier with the vegetation than the human health researchers. As indicated above, while controlled human health clinical study results regarding the importance of the higher hourly average O₃ concentrations were reported in the early 1990s (Hazucha et al., 1992), vegetation researchers reported in the 1960s that higher O₃ concentrations were an important factor for assessing vegetation O₃ effects. High O₃ concentrations were found in the 1960s to affect plant injury (e.g., spots on plants) (Heck et al., 1966). Little research on the importance of higher O₃ concentrations in relation to the mid and lower levels affecting plant damage (e.g., growth) had been performed prior to the 1980s. In December 1981, I held an informal discussion with the EPA at its research laboratory in Corvallis, Oregon. I discussed a possible hypothesis relating to the relative importance of the higher O₃ concentrations versus mid- and lower-level hourly average values
for assessing plant damage resulting in economic impact. During the discussion, EPA inquired if I could design exposure regimes for the EPA that would test the hypothesis that the higher hourly average \(\text{O}_3 \) concentrations should be weighted more than the mid- and low-level values.

Soon after the December 1981 Corvallis discussion, Lefohn and Benedict (1982) published their paper that hypothesized that the higher hourly average concentrations should be provided greater weight than the mid- and low-level values when assessing crop growth reduction. In 1983, Musselman et al. (1983) provided experimental evidence supporting the hypothesis. Hogsett et al. (1985), applying exposure regimes designed by me, provided additional support to the Musselman et al. (1983) findings about the importance of the higher hourly average \(\text{O}_3 \) concentrations receiving greater weight than the mid and lower values in affecting vegetation.

Following the initial vegetation experiments by Musselman et al. (1983) and Hogsett et al. (1985), a series of controlled experiments was undertaken worldwide for assessing the importance of the higher \(\text{O}_3 \) concentrations in eliciting a vegetation response. These controlled fumigation experimental results provided additional evidence for emphasizing the importance of the higher concentrations in comparison to the mid- and low-level values (e.g., US EPA, 1986, 1992, 1996, 2013; Musselman et al., 1983, 1986, 1994; Hogsett et al., 1985; Nussbaum et al., 1995; Yun and Laurence, 1999; Lee and Hogsett, 1999; Oksanen and Holopaninen, 2001; Köllner and Krause, 2003; Wang et al., 2008).

These experiments help form the basis for the focus on the higher hourly average \(\text{O}_3 \) concentrations. In other words, by reducing the higher part of the distribution (not just the peak values), the risk to vegetation will be reduced based on the experimental evidence. Based on a thorough review of the literature, EPA (2013) concluded that (1) \(\text{O}_3 \) effects in plants are cumulative; (2) higher \(\text{O}_3 \) concentrations appear to be more important than lower concentrations in eliciting a response; (3) plant sensitivity to \(\text{O}_3 \) varies with time of day and plant development stage; and (4) quantifying exposure with indices that accumulate the \(\text{O}_3 \) hourly concentrations and preferentially weight the higher concentrations improves the predictive power of exposure/response models for growth and yield, over using indices based on mean and other exposure indices. These conclusions have been reiterated in the current draft of the ISA (page 8-182). The draft ISA notes that no recent information available since the 2013 Ozone ISA alters these basic conclusions.

As indicated on page 8-183 in the draft ISA, the authors discuss the flux uptake metric. The metric is based on determining the \(\text{O}_3 \) concentration from the atmosphere that enters the leaf and is discussed in the draft ISA as follows:

Another approach for improving risk assessment of vegetation response to ambient ozone is based on determining the ozone concentration from the atmosphere that enters the leaf (i.e., flux or deposition). Much work has been published in recent years, particularly in Europe, in using mathematically tractable flux models for ozone assessments at the regional, national, and European scale (Feng et al., 2017; Mills et al., 2011; Matyssek et al., 2008; Paoletti and Manning, 2007; Emberson et al., 2000b; Emberson et al., 2000a).
While some efforts have been made in the U.S. to calculate ozone flux into leaves and canopies (Turnipseed et al., 2009; Uddling et al., 2009; Bergweiler et al., 2008; Hogg et al., 2007; Grulke et al., 2004; Grantz et al., 1997; Grantz et al., 1995), little information has been published relating these fluxes to effects on vegetation. Recently, Grantz et al. (2013) reported short-term ozone flux and related it to leaf injury in cotton in California. The authors reported that cotton leaves were most sensitive in the midafternoon, possibly due to changes in detoxification. They suggested with more research a sensitivity parameter may function well with the W126 metric. However, there remains much unknown about ozone stomatal uptake in vegetation at larger scales and how much uptake results in an injury or damage, which depends to some degree on the amount of internal detoxification occurring with each particular species. Those species having high amounts of detoxification potential may, in fact, show little relationship between ozone stomatal uptake and plant response (Musselman and Massman, 1999). The lack of data in the U.S. and the lack of understanding of detoxification processes have made this technique less viable for vulnerability and risk assessments in the U.S.

The interaction between O\textsubscript{3} and plant tissues is driven mainly by three distinct processes: changes in external O\textsubscript{3} concentration, O\textsubscript{3} uptake, and O\textsubscript{3} detoxification (see Heath et al., 2009). The diurnal pattern of detoxification does not necessarily match the diurnal patterns of external O\textsubscript{3} concentration and O\textsubscript{3} uptake (Heath et al., 2009; Wang et al., 2015; Dai et al., 2019). I would suggest that all three of these references be included in the draft ISA. In Lefohn et al. (2018), we discussed the stomatal flux index as follows:

For assessing the potential for ozone to affect vegetation injury, growth and/or yield, exposure is defined as the integral of the instantaneous level over the period the vegetation is exposed to ozone (commonly expressed in unit of mol m-3 h or ppm-hrs) (Musselman et al., 2006). Examples of exposure indices are the W126 and AOT40 metrics (see Section 2.3.4). Although not necessarily considered exposure, seasonal average levels (e.g., 12-h daily average values averaged over a specified period) have also been referred to as exposure indices (US EPA, 2013). In contrast, the ozone dose is determined by first calculating the stomatal flux, which is a temporally dynamic measure of the rate of entry of ozone into the leaf (nmol m-2 s-1). Dose is the total amount of ozone that is absorbed into the leaf through the stomata, in units of nmol m2, over a period of time and is calculated by integrating over time the instantaneous stomatal flux (Fowler and Cape, 1982; Mills et al., 2011b). The flux is accumulated over a species-specific phenological time window and the vegetation-damaging ozone flux is expressed as the Phytotoxic Ozone Dose (POD\textsubscript{Y}), where Y represents a detoxification threshold below which it is assumed that any ozone molecule absorbed by the leaf will be detoxified (Mills et al., 2011b).

In Lefohn et al. (2018), we noted that flux-based metrics involve accumulation above a fixed flux threshold which is included to represent the detoxification capacity of the plant that varies with vegetation type/species (Mills et al., 2011b). While detoxification should ideally be
represented as a dynamic variable rather than as a fixed threshold, modeling approaches are not yet able to take this dynamic variation into account for exposure-based (e.g., AOT40 or W126) or flux-based metrics. Results reported by Wang et al. (2015) for the diurnal changes of ascorbate, a major detoxification agent in the apoplast and leaf tissues of winter wheat, provide evidence for the dynamic nature of detoxification. Dai et al. (2019) have recently observed apoplastic ascorbate (ASC_{apo}) as an important contributor to the detoxification of O₃ in plants. The diurnal variation of ASC_{apo}, with maximum values occurring in the late morning with lower values experienced in the afternoon, was observed. With the detoxification potential by ASC_{apo} being lower in the afternoon, the implication is that the period of greatest uptake (e.g., the late morning/early afternoon hours) of O₃ in vegetation may coincide with the period of greatest detoxification potential, while the period of less detoxification may occur in the late afternoon hours, when the highest hourly O₃ concentrations occur. Heath et al. (2009) hypothesized that this was a possible explanation for the higher O₃ concentrations (which occurred in the later part of the day) eliciting a greater effect than the mid- and low-level values.

The US EPA made a conscious decision over 30 years ago, based on detailed analyses, to not use average concentration metrics as indicators of potential harm to vegetation. In 1986, the US EPA addressed the issue of using seasonal average concentration metrics to protect vegetation. In the early 1980s, the US EPA was considering the seasonal 7-h daily average concentration (referred to as the M7 (0900 h – 1559 h) metric) as a vegetation O₃ standard. In its Air Quality Criteria for Ozone and Other Photochemical Oxidants document (US EPA, 1986), the Agency stated on pages 6-10 and 6-11:

A mean concentration (with various averaging times) is the most common statistic used. Because the mean is computed by summing the concentrations and dividing by time, it mathematically treats all concentrations as being equally effective in causing a plant response. The use of a mean concentration (with varying averaging times) to characterize long-term exposures minimizes the contributions of peak concentrations to the response by treating low-level, long-term exposures the same as high-concentration, short-term exposures. The use of a longer-term mean concentration ignores the importance of peak concentrations and is inconsistent with the literature (emphasis added). A number of studies have shown that concentration is more important than exposure duration in causing a response. For example, studies with beans and tobacco (Heck et al., 1966) showed that a dose over a short time period induced more injury than the same dose distributed over a longer time period. Studies with tobacco showed that the O₃ concentration was substantially more important than exposure duration in determining the extent of foliar injury (Tonneijck, 1984). In this study, tobacco was exposed to a range of O₃ concentrations (0.02 to 0.15 ppm) for 8 hr/day for 1 to 7 days. In beans, foliar injury developed when the internal O₃ flux exceeded 115 ~moles/m² within 1 hr (Bennett, 1979). However, a single 3-hr exposure at about half the O₃ concentration (0.27 compared to 0.49 ppm) required approximately 64 percent greater internal O₃ flux to induce the same amount of foliar injury as in the 1-hr exposure (Bennett, 1979). Amiro et al. (1984) showed that higher concentrations were more important than low concentrations in causing injury. Their study also suggested the existence of a biochemical injury
threshold (i.e., the O₃ uptake rates that plants can experience without inducing visible foliar injury). The greater importance of concentrations compared to exposure duration has been reported by other authors also (e.g., Heck and Tingey, 1971; Henderson and Reinert, 1979; Reinert and Nelson, 1979). The total ozone dose (concentration multiplied by time) has been used to describe plant exposure; however, it suffers from the same problem as the mean. The total dose is simply the summation of the ppm-hr over the study period, which treats all concentrations as being equally effective. Several investigators have attempted to give greater importance to peak O₃ concentrations. Oshima et al. (1977a,b) and Lefohn and Benedict (1982), for example, have summed only the ppm-hr of exposure greater than some preselected value. Larsen et al. (1983) introduced the concept of "Impact" to describe the effects of O₃ and SO₂ on soybeans. The "Impact (I)" is calculated similarly to total dose, except that the concentration is raised to an exponent greater than one (I= C^w x T); this method of calculation effectively gives greater weight to the higher concentrations. More recently, Larsen and Heck (1984) have suggested the term "effective mean" as an approach for describing the greater importance of higher concentrations. The "effective mean" is defined as the average hourly impact raised to an exponent and divided by the duration. Several lines of evidence suggest that higher concentrations have a greater influence in determining the impact of O₃ on vegetation. Studies have shown that plants can tolerate some combinations of exposure duration and concentration without exhibiting foliar injury or effects on growth or yield, illustrating that not all concentrations are equally effective in causing a response. From the toxicological perspective, it is the peaks or concentrations above some level that are most likely to have an impact. Effects occur on vegetation when the amount of pollutant that the plant has absorbed exceeds the ability of the organism to repair or compensate for the impact.

On page 6-12, the EPA (1986) continues

Not only are concentration and time important but the dynamics of the O₃ exposure are also important; that is, whether the exposure is at a constant or variable concentration. Musselman et al. (1983) recently showed that fixed concentrations of O₃ cause the same kind of responses as variable concentrations at the equivalent dose. Fixed concentrations, however, had less effect on plant growth responses than variable concentrations at similar doses. Exposures of radishes to ambient O₃ in open-top exposure chambers showed that significant yield reductions occurred when the maximum O₃ concentration exceeded 0.06 ppm on at least 10 percent of the days when the crop was growing (Ashmore, 1984). Initial studies by Hogsett et al. (1985) have compared the response of alfalfa to daily peak and episodic O₃ exposure profiles which had the equivalent total O₃ dose over the growing season. Alfalfa yield was reduced to a greater extent in the episodic than the daily peak exposure. This study also illustrates the problem with the 7-hr seasonal mean concentration, which is that the peak concentrations are not properly considered. The plants that displayed the greater growth reduction (in the episodic exposure) were exposed to a
significantly lower 7-hr seasonal mean concentration (emphasis added). Studies with SO₂ also showed that plants exposed to variable concentrations exhibited a greater plant response than those exposed to a constant concentration (Mclaughlin et al., 1979; Male et al., 1983). These results suggest that the mechanisms causing the response are the same, but that exposures to fixed concentrations underestimate the magnitude of plant growth responses that can occur with episodic exposures.

Since 1986, the US EPA has reiterated its commitment to focusing on weighting the higher hourly average concentrations more than the mid- and low-level hourly average concentrations to protect vegetation from both injury and damage (US EPA, 1996; 2006; 2013; Federal Register, 2015). As noted above, EPA (1986) noted the greater importance of concentrations compared to exposure duration. The total O₃ exposure (i.e., the sum of all hourly average concentrations over a time period), referred to as SUM00, in the literature, has been used to describe plant exposure. However, this exposure metric suffers from the same problem as the mean. The total exposure (SUM00) is simply the summation of the concentration multiplied by time over the study period, which treats all concentrations as being equally effective. Even though both the seasonal average (e.g., M7 and M12) and the SUM00 exposure metrics are still used in experimental studies for assessing vegetation risk, as EPA (1986, 1996, 2006, 2013) noted in its literature reviews, both the seasonal average and SUM00 O₃ exposure metrics are inappropriate for assessing vegetation effects based on biological experiments using different exposure regimes, as well as empirical “uncontrolled” experiments (e.g., the San Bernardino National Forest study).

It is not just the reduction of the "peaks," but also the reduction of those hourly average concentrations in the upper part of the distribution that is important to reduce vegetation effects. To accomplish this goal, the Agency moved from its initial consideration of seasonal M7 (daily 7-h average concentration averaged over a growth season) or M12 (daily 12-h average concentration averaged over a growth season) exposure metrics to the use of cumulative exposure metrics (i.e., SUM06 and W126). The SUM06 exposure metric is the sum of all hourly average concentrations greater than or equal to 60 ppb. As mentioned above, the US EPA has discussed the use of flux-based indices in its standard-setting process but believes that further research concerning dynamic detoxification and other considerations are required before flux indices might be considered as a practical use in the standard-setting process. The W126 O₃ exposure index, where the sigmoidal weighting is described in Lefohn and Runeckles (1987) and the W126 metric is described in Lefohn et al. (1988), is a weighted cumulative exposure index that provides greater weight to the higher hourly average O₃ concentrations rather than the mid- and lower-level values. Figure 2-1 below illustrates the weighting scheme. In addition, the W126 index does not impose an artificial cutoff (i.e, threshold) and is not an "average" of several values collected over the course of a short- or long-term time period. The W126 weighting scheme, as noted by the EPA (2013), is supported by research results performed under controlled conditions, as well as under uncontrolled exposure conditions, such as observed in the San Bernardino National Forest in the Los Angeles area.
Figure 2-1. The weighting applied to hourly average O_3 values for the calculation of the W126 exposure index (see Lefohn and Runeckles, 1987 and Lefohn et al., 1988 for further details).

The 2013 ISA noted that at the San Bernardino site, located near Los Angeles, reductions in ambient O_3 exposures between 1980 and 2000 were related to improvements in tree conditions. The frequency of midrange hourly average O_3 concentrations was little changed over this period. EPA (2013) suggested it was the reduction in the higher hourly average O_3 concentrations that was responsible for the improvement in tree health. Please note that the reference to the empirical results at the San Bernardino National Forest was not included in the current draft of the ISA. I suggest that the San Bernardino National Forest results should be discussed in the draft of the ISA as providing independent confirmation separate from the chamber experimental studies of the importance of the higher hourly average O_3 concentrations in influencing vegetation effects.

As indicated above, based on a thorough review of the vegetation literature, (1) O_3 effects in plants are cumulative; (2) higher O_3 concentrations are more important than lower concentrations in eliciting a response; (3) plant sensitivity to O_3 varies with time of day and plant development stage; and (4) quantifying exposure with indices that accumulate the O_3 hourly concentrations and preferentially weight the higher concentrations improves the predictive power of exposure/response models for growth and yield, over using indices based on mean and other exposure indices. Based on the peer-reviewed literature and its own research studies, the EPA (2013) identified the W126 cumulative exposure metric as the most appropriate to use to evaluate both the adequacy of the current secondary standard and the appropriateness of any potential revisions (Federal Register, 2015 – page 65373). In its current O_3 NAAQS review, both the draft ISA and draft PA continue to focus on the W126 cumulative exposure index as the metric to protect vegetation.
2.3 Air Quality Index (AQI) focuses on the higher ozone concentrations

EPA’s recognition of the importance of the higher O₃ concentrations is reflected in its Air Quality Index (AQI) reporting across the US (EPA, 2018). Local air quality agencies are required to report air quality using the Air Quality Index (AQI) as required in 40 CFR Part 58.50 and according to 40 CFR Appendix G to Part 58. Metropolitan Statistical Areas (MSAs) with a population of more than 350,000 are required to report the AQI daily to the general public. MSAs must report the AQI daily, which is defined as at least five days each week. There are six AQI categories and their names and colors are as follows:

<table>
<thead>
<tr>
<th>AQI Range</th>
<th>Descriptor</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 50</td>
<td>Good</td>
<td>Green</td>
</tr>
<tr>
<td>51 to 100</td>
<td>Moderate</td>
<td>Yellow</td>
</tr>
<tr>
<td>101 to 150</td>
<td>Unhealthy for Sensitive Groups</td>
<td>Orange</td>
</tr>
<tr>
<td>151 to 200</td>
<td>Unhealthy</td>
<td>Red</td>
</tr>
<tr>
<td>201 to 300</td>
<td>Very Unhealthy</td>
<td>Purple</td>
</tr>
<tr>
<td>301 to 500</td>
<td>Hazardous</td>
<td>Maroon</td>
</tr>
</tbody>
</table>

The pollutant specific sensitive groups are separated by 8-h daily maximum O₃ concentrations as indicated in Fig. 2-2 below.

<table>
<thead>
<tr>
<th>8-hour Ozone Concentration</th>
<th>Air Quality Index Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 54 ppb</td>
<td>✿ Good (Green)</td>
</tr>
<tr>
<td>55 – 70 ppb</td>
<td>✿ Moderate (Yellow)</td>
</tr>
<tr>
<td>71 – 85 ppb</td>
<td>✿ Unhealthy for Sensitive Groups (Orange)</td>
</tr>
<tr>
<td>86 – 105 ppb</td>
<td>✿ Unhealthy (Red)</td>
</tr>
<tr>
<td>106 – 200 ppb</td>
<td>✿ Very Unhealthy (Purple)</td>
</tr>
<tr>
<td>>200 ppb</td>
<td>✿ Hazardous (Maroon)</td>
</tr>
</tbody>
</table>

Figure 2-2. Air quality index levels (AQI) related to 8-h concentrations.

An important aspect of the AQI index is that the higher the 8-h daily maximum O₃ concentration the higher the index. While this would appear to be an obvious statement, the ramification is that simply counting the number of exceedances of 8-h daily maximum concentrations greater than 70 ppb will not provide an accurate indication of the health risks associated with O₃ exposures during a specific period (e.g., March-October). **Rather, it is the cumulative sum of the number of days above 70 ppb weighted by a factor that relates to each day’s index range that is most important.** For example, in Fig. 2-3 below for Los Angeles-Long Beach-Anaheim, CA (EPA, 2019c), when one compares the exposure for 2015 with the exposure for 2017, one might conclude based on the number of exceedance days (108 versus 107 above 70 ppb) that the annual O₃ exposures were similar. However, more days in 2017 occurred with
orange and purple exceedances than in 2015. Based on the number of days that experienced orange and purple exceedances, the O$_3$ exposures (i.e., health risk) experienced by the public were higher in 2017 than 2015. As indicated, simply comparing the number of exceedance days among O$_3$ monitors is not an adequate way to quantify the exposure differences among monitors. In an effort to inform the public of potential health risks, the American Lung Association’s annual State of the Air Report (ALA, 2019) utilizes weighting factors applied to each range of daily 8-h daily maximum O$_3$ concentrations associated with the Air Quality Index levels described above. The number of orange days (unhealthy for sensitive groups) experienced by each county receives a factor of 1; red days (unhealthy), a factor of 1.5; purple days (very unhealthy), a factor of 2; and maroon days (hazardous), a factor of 2.5. This weighting scheme provides a better way to inform the public of potential health risks than the simple determination used by various groups to count the number of exceedances above 70 ppb.

2.4 Further Ramifications for the Importance of the Higher Concentrations

As noted above, both vegetation effects research and controlled laboratory studies of human volunteers indicate that higher O₃ hourly average concentrations elicit a greater effect on hour-by-hour physiologic response than lower hourly average values. The weighting of the higher values compared to the mid and lower hourly average O₃ concentrations results in a nonlinear response for both human health and vegetation (Hazucha and Lefohn, 2007; Lefohn, Hazucha, Shadwick, and Adams, 2010; Heath et al., 2009). The nonlinear response noted above for the human health clinical studies and the vegetation experiments has an important impact on the validity of Haber’s rule (also referred to as Haber’s law). Haber's rule states that, for a given poisonous gas, \(C \times t = k \), where \(C \) is the concentration of the gas (mass per unit volume), \(t \) is the amount of time necessary in order to produce a given toxic effect, and \(k \) is a constant, depending on both the gas and the effect. Haber’s law or rule, as commonly understood in inhalation toxicology, states: \(C \times T = \text{constant} \), meaning that identical products of concentration of an agent in air (\(C \)) and duration of exposure (\(T \)), the \(CT \) product, will yield an identical biological response. The formula was originally developed by the German physical chemist Fritz Haber (1868 –1934) to characterize the acute toxicity of chemicals used in gas warfare. For example, the rule states that doubling the concentration will halve the time. Haber's rule is an approximation and Haber himself acknowledged that it was not always applicable (https://en.wikipedia.org/wiki/Haber%27s_rule). The greater importance of concentrations compared to exposure duration for O₃ results in the failure of Haber’s rule. Specifically, when concentration is more important than the time required to elicit an adverse effect, Haber’s rule will not be applicable when attempting to determine a cumulative exposure. Miller et al. (2000) discuss the fact that many toxicologists have used Haber’s rule to analyze experimental data whether their chemicals, biological endpoints, and exposure scenarios were suitable candidates for the rule. As indicated by the literature, as well as the EPA reviews since 1986, Haber’s rule does not appear to be applicable for O₃.

Both the vegetation and the clinical health studies show that because the higher hourly average O₃ concentrations have a greater effect than the mid- and lower-level values, the use of long-term average concentrations, which combine all hourly values into one number, is an inappropriate index to use because the highest hourly average concentrations, which are more biological important than the lower values, are “averaged” out by smoothing, mathematical effects. The important result is that a comparison among different O₃ monitoring sites results in many of the sites having similar long-term average concentrations that differ in the magnitude and number of the biologically important elevated O₃ hourly average concentrations. The long-term average is not correlated with the number and magnitude of the biologically important elevated hourly average concentrations. The relationship of the long-term average to the occurrence of the higher concentrations will be discussed further in Section 3.

Following the setting of the 2015 O₃ standard, the metrics used in the United States to assess the risk of O₃ to human health and vegetation continue to be the 8-h daily maximum concentration (human health) and the W126 cumulative exposure index (vegetation). Both metrics as discussed above are biologically relevant. However, other exposure metrics are used for assessments by researchers (e.g., see TOAR paper by Lefohn et al., 2018; Wang et al., 2019; Lefohn et al., 2017). Using the same hourly data, it is possible to reach entirely different
scientific conclusions for assessing trends and O₃ impacts utilizing different exposure metrics (Lefohn et al., 2017, 2018). **What is most important is that the exposure metrics be biologically relevant and defensible.**

The impacts of surface O₃ on human health and vegetation have prompted precursor emission reductions in the United States. As emissions change, the distribution of hourly O₃ concentrations also changes, as do the values of individual exposure metrics (Lefohn et al., 2017). The distribution changes can result in exposure metric trend patterns changing in a similar direction as trends in emissions (e.g., metrics increase as emissions increase) or, in some cases, in opposite directions. For example, Lefohn et al. (2017) reported, using the current form of the 8-h standard for the 196 US sites studied in their analysis, 162 sites showed negative trends, 32 showed no trends, and 2 had insufficient data. In comparison, using the a 6-month (April-September) 12-h daylight average concentration, 92 sites showed negative trends, 85 sites showed no trend, 19 sites showed increasing trends, and 0 sites showed insufficient data. Thus, while 162 sites exhibited a negative trend in O₃ using the 4th highest annual 8-h average exposure metric, using the 6-month 12-h daylight average exposure metric based on data from the same sites showed only 92 instances of negative trends and increasing trends for 19 sites compared to 0 sites for the 8-h form of the standard. The trend patterns of the two exposure metrics to changes in the reduction of emissions using the same data from the US sites were extremely different and provided an excellent example why the selection of appropriate biologically relevant exposure metrics is important for assessing human health and/or vegetation effects.

In addition to the Lefohn et al. (2017) analysis, Lefohn et al. (2018) compared several exposure metrics that focused on the higher hourly average O₃ concentrations with two metrics that are based on all hourly average concentrations (i.e., mean and median). In Table 5 of their analyses, Lefohn et al. (2018) compared the trends using different metrics that were in the same direction (i.e., decreasing, increasing, or no significant change) compared to other metrics. Trends in the human health metric impacted by the high end of the distribution bear the least resemblance to trends in the mean and median values with generally less than 50% of sites having trends in the same direction. In many cases the trends were in opposite direction (i.e., the metrics associated with the highest concentrations exhibited decreases over time, while the mean and median metrics exhibited increases). Table 2-1 below provides a summary of the relationship between two of the exposure metrics focused on the highest concentrations (i.e., the annual 4th highest daily maximum 8-h average concentration (4thdma8epa) and the number of daily maximum 8-h averages greater than 70 ppb (nvgt070 summer) for the months of April-September) and the median and mean values. As indicated above, overall, trends in the four mean/median metrics were not representative of the trends behavior of those metrics associated with the higher concentrations.
Table 2-1. Comparison of trends using different metrics that were in the same direction (i.e., decreasing, increasing, or no significant change) compared to other metrics. Source: Adopted from Lefohn et al. (2018).

<table>
<thead>
<tr>
<th></th>
<th>median annual</th>
<th>mean annual</th>
<th>median summer</th>
<th>mean summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th dma8epa</td>
<td>33%</td>
<td>39%</td>
<td>43%</td>
<td>50%</td>
</tr>
<tr>
<td>nvgt070 summer</td>
<td>37%</td>
<td>44%</td>
<td>43%</td>
<td>53%</td>
</tr>
</tbody>
</table>

Lefohn et al. (2017) cautioned that trends in mean or median concentrations did not appear to be well associated with those exposure metrics that are most optimum indicators of overall changes in anthropogenic emissions, biological effects, or climate-driven meteorology. Similar to the findings of other studies, Lu et al. (2018) reported that exposure indices, such as the median and the M12 average metrics (average of hourly O₃ concentrations for the 12-h period from 08:00 to 19:59 local time April–September), which focus on the midrange of the O₃ hourly average concentration distribution, did not appear to adequately describe the magnitude and frequency of high O₃ events. The authors reported that the median and seasonal M12 metrics, instead of being much greater in China than in Japan, South Korea, Europe, and the United States, were similar in values for all countries, whereas much higher hourly averaged O₃ concentrations were experienced in China compared to the other four countries.

Both the human health clinical results and the vegetation experiments form the basis for the implementation of O₃ control strategies in the United States and around the world. Simply stated, by reducing the higher part of the distribution (not just the peak values), it is believed that the risk to human health and vegetation will be reduced. As the number of repeated peaks is reduced, the risk to human health and vegetation is reduced. In 2015, it was the opinion of the EPA (Federal Register, 2015 – page 65358) that both acute and chronic effects would be reduced in implementing the new O₃ standards. The higher part of the distribution of hourly average concentrations would be moved downwards toward the middle hourly average concentrations. While some may not agree with the EPA and that to eliminate “chronic” effects from O₃, one must reduce the lower hourly average concentration. However, this may not be achievable. By reducing NOₓ to reduce the higher O₃ concentrations, there is a reduction in NOₓ scavenging and a resultant upward shift of the lower concentrations. This will be further discussed in Section 3. If one believes that an annual average or a seasonal average of the hourly average concentrations are the only candidates for exposure metrics to use for controlling chronic effects, then models, as well as empirical data, indicate that these metrics will not perform as some researchers anticipate. However, if one believes, as the EPA believed in 2015, that adequate protection for both acute and chronic exposures is attained by protecting against repeated occurrences of exposures of concern (i.e., the higher hourly average concentrations), then practical emission control strategies will reduce both acute and chronic effects.
Fundamental Principle No. 2: Daily maximum hourly averaged ozone concentrations will remain well above 0 parts per billion (ppb) even if all anthropogenic emissions were eliminated worldwide

Introduction

The ramifications of Fundamental Principle No. 2 are important. If one assumes that to control for chronic health effects that annual or seasonal averages must be reduced, then models, as well as empirical data, indicate that annual and seasonal average metrics will not perform as some researchers anticipate. Lefohn et al. (2017) noted for 196 O₃ monitors in the US that trend patterns were more variable using the 12-h seasonal mean exposure metric than the annual 4th highest 8-h daily maximum concentration (which focuses on the highest concentrations). While there were no sites that experienced increasing trends in the 4th highest 8-h daily maximum metric, 10% of the 196 sites in the US experienced increasing trends using the 12-h seasonal mean index. There were also more sites that experienced no trends using the 12-h seasonal mean metric than the 4th highest 8-h daily maximum index. In other words, the metric that focused on the highest concentrations behaved more consistently than the metric that focused on the entire range of concentrations. As more and more anthropogenic emissions are reduced, there is a range of hourly average O₃ concentrations at a specific monitoring site influenced by these emissions that begins to appear resistant to further change. As will be discussed below, the process of identifying this range of O₃ concentrations begins with the movement of both the high and lower hourly average concentrations towards the mid-level values as emissions are reduced. These patterns were reported in the literature by various researchers (e.g., Lefohn et al., 1998; EPA, 2014b; Simon et al., 2015; Lefohn et al., 2017, 2018).

To develop the discussion for Fundamental Principle No. 2, we first explore the changing patterns in the distribution of hourly average O₃ concentrations as emissions are reduced. We explore the changes in the frequency of both high and low levels of O₃ hourly average concentrations. Following the description of the changes in the distribution patterns, we then explore when during the year the highest hourly average O₃ concentrations occur at sites where emissions were reduced. Both modeling and empirical data are presented for comparison. Finally, we explore what the results from models, as well as empirical data, tell us about background O₃ levels. Integrating all the information described in this section provides us with the modeling and empirical support for Fundamental Principle No. 2: Daily maximum hourly averaged O₃ concentrations will remain well above 0 parts per billion (ppb) even if all anthropogenic emissions were eliminated worldwide.

The importance of Fundamental Principle No. 2 is that the continuation of emissions reductions will fail in achieving reductions of the lowest hourly average O₃ concentrations. Emission reductions will achieve the shifting of the higher hourly average O₃ concentrations toward the mid-level values. However, rather than emission reductions causing the mid-level hourly values to shift downward toward the very lowest values, the lower hourly average concentrations will shift upwards toward the mid-level values, with the result that a Gaussian-like (i.e., bell shaped) distribution of hourly average concentrations may occur depending upon the amount of emission reductions and the influence of the remaining anthropogenic contributions to ambient O₃ levels. This phenomenon is discussed in later sections. The
A distribution of background \(O_3 \) hourly average concentrations will determine for each site the range of hourly average concentration values in the limit as emissions are reduced. The shape of the distribution of \(O_3 \) hourly average concentrations may appear to be Gaussian-like with only the amplitude varying at each site. Thus, daily maximum hourly averaged \(O_3 \) concentrations will remain well above 0 ppb even if all anthropogenic emissions were eliminated everywhere. Because we never will be able to reduce all anthropogenic emissions (either in the US or outside of the US), we can explore how actual \(O_3 \) distributions of hourly average concentrations have changed as emissions have been reduced. Models, as well as empirical data, provide us insight about the behavior of these changes.

3.1 Patterns of Shifting of Hourly Average Concentrations as Emissions are Reduced

3.1.1 The Lower Ozone Concentrations Shift Upward as Emissions are Reduced

In the 2014 EPA Policy Assessment document (EPA, 2014a), the EPA noted in its modeling effort that as NO\(_x\) was reduced, the high end of the distribution shifted downward and the low-end of the distribution shifted upward. There was a compression of the distribution of concentrations. Figures 4-9 and 4-10 (pages 4-24 and 4-25) presented in EPA (2014b) are reproduced here as Figs. 3-1 and 3-2. For the 12 urban-influenced sites described in the modeling results for the period April-October, the general pattern from the modeling effort is that as emissions reductions occur to attain 4\(^{th}\) highest 8-h daily maximum (MDA8) values for alternative scenarios of 75, 70, 65, and 60 ppb, the individual daily MDA8 values at the high end of the distribution are reduced toward the center of the distribution. However, the lowest daily MDA8 values increase. The model predictions have been observed using actual observations resulting from emission reductions (Lefohn et al., 1998; Simon, 2015; Lefohn et al., 2017, 2018). The shifting of the lower concentrations toward the mid-level values is associated with less NO\(_x\) scavenging of the lower hourly average concentrations as reduction in NO\(_x\) emissions occurs (Lefohn et al., 1998; U.S. EPA, 2014b; Simon, 2015; Lefohn et al., 2017, 2018).

By focusing on a specific level of the 4\(^{th}\) highest MDA8 value that protects human health, the US EPA’s emissions reductions strategy forces the concentrations of concern (i.e., the highest values) downward toward the middle values. The frequency of the middle concentration values is increasing due to the downward shift from the higher values as indicated above, as well as the upward shift of the lower MDA8 concentrations toward the middle. In other words, the high end is coming down and the low end is coming up. Both meet in the middle of the distribution as described by Lefohn et al. (1998) and Simon et al. (2015).

On page 3C-98 (3C.7.2 Distribution of Hourly \(O_3 \) Concentrations) of the draft PA (EPA, 2019b), the Agency has updated its 2014 modeling analyses. Its current conclusions are similar to the conclusions reached in the 2014 PA (EPA, 2014a) earlier document. Figures 3-3 to 3-10 (reproduced from Figs. 3C-67, page 3C-100 through Figure 3C-74, page 3C-107) display diurnal boxplots of hourly \(O_3 \) concentrations for 2015-2017 at monitor locations in each urban area. For each hour of the day, the rectangular box represents the 25th and 75th percentiles of the distribution, with a solid line representing the median of the distribution through the center. Each
The box has “whiskers” which extend up to 1.5 times the interquartile range (i.e., the 75th percentile minus the 25th percentile) from the box, and dots which represent outlier values. Black boxplots represent observed hourly O$_3$ concentrations, while blue boxplots represent hourly O$_3$ concentrations adjusted to meet the current standard of 70 ppb. Red boxplots represent hourly O$_3$ concentrations adjusted for the 75 ppb scenario, and green boxplots represent hourly O$_3$ concentrations adjusted for the 65 ppb scenario.

Eight cities were highlighted in the Agency’s modeling analyses (Atlanta, Boston, Dallas, Detroit, Philadelphia, Phoenix, Sacramento, and St. Louis). Ambient hourly O$_3$ monitoring data for years 2015 through 2017 in each of the eight urban study areas were adjusted using a model-based adjustment approach to create three different air quality scenarios. These scenarios included conditions that just meet the current O$_3$ standard (design value of 70 ppb), as well as conditions that just meet two alternative standards (design values of 75 ppb and 65 ppb). The figures below (Figs. 3-3 to 3-10) reproduced from the draft Policy Assessment document (EPA, 2019b) illustrate the shifting of the hourly average concentrations that result in the compression of the distribution as emissions are reduced to attain the three scenarios listed above. The EPA described the compression of the distribution of hourly average concentrations (high-end shifting downward and the low-end shifting toward the middle) in the modeling results in the draft PA (page 3C-98) as follows:

The hourly plots show similar patterns in most of the urban areas. O$_3$ concentrations during daytime hours decrease from observed values (black) to values adjusted to meet the current standard of 70 ppb (blue) and decrease further under the alternative scenario of 65 ppb (green). These daytime decreases are mainly seen on high O$_3$ days represented by outlier dots extending above the box and whiskers. Some areas had observed 2015-2017 design values already meeting the alternative scenario of 75 ppb, therefore some plots show increases in O$_3$ concentrations while other areas show decreases in O$_3$ concentrations for the 75 ppb scenario.

In some urban areas O$_3$ concentrations on the mid-range days, represented by the 25th–75th percentile boxes, remained fairly constant (e.g. Boston) while in other urban areas O$_3$ on mid-range days decreased (e.g. Atlanta). Although daytime O$_3$ decreased, concentrations during morning rush-hour period generally increase. These increases are associated with VOC-limited and NO$_X$ titration conditions near NO$_X$ sources during rush-hour periods. Reducing NO$_X$ under these conditions results in less O$_3$ titration and thus increases O$_3$ concentrations. Nighttime increases in O$_3$ as a results of NO$_X$ reductions are often seen to a lesser extent than morning rush hour period increases. Collectively these features generally lead to a flattening of the diurnal O$_3$ pattern with smaller differences between daytime and nighttime concentrations as NO$_X$ emissions are reduced. Urban areas that required more substantial NO$_X$ reductions for the 65 ppb scenario generally had more pronounced patterns of decreases in daytime
O_3 and increases in nighttime O_3 leading to a flatter diurnal O_3 pattern (e.g. Sacramento in Figure 3C-73).
Figure 4-9. Distributions of Composite Monitor Daily Maximum 8-hr Average Values for the 12 Urban Study Areas in the Epidemiology-based Risk Assessment. Plots depict values based on ambient measurements (base), and values obtained with the HDDM adjustment methodology when just meeting the 75, 70, 65 and 60 ppb standards. Values shown are based on CBSAs for April-October of 2007. Note that the HDDM adjustment technique was not able to adjust air quality to just meet a 60 ppb standard in New York, so no boxplot is shown for that case. Boxes represent the median and quartiles, X’s represent mean values, whiskers extend up to 1.5x the inter-quartile range from the boxes, and circles represent outliers.

Figure 3-1. Figure 4-9 from US EPA (2014b).
Figure 3-2. Figure 4-10 from US EPA (2014b).
Figure 3C-67. Diurnal distribution of hourly O₃ concentrations at monitoring sites in Atlanta.

Figure 3-3. Figure 3C-67 from US EPA (2019b).
Figure 3C-68. Diurnal distribution of hourly O₃ concentrations at monitoring sites in Boston.

Figure 3-4. Figure 3C-68 from US EPA (2019b).
Figure 3C-69. Diurnal distribution of hourly O_3 concentrations at monitoring sites in Dallas.

Figure 3-5. Figure 3C-69 from US EPA (2019b).
Figure 3C-70. Diurnal distribution of hourly O$_3$ concentrations at monitoring sites in Detroit.

Figure 3-6. Figure 3C-70 from US EPA (2019b).
Figure 3C-71. Diurnal distribution of hourly O_3 concentrations at monitoring sites in Philadelphia.

Figure 3-7. Figure 3C-71 from US EPA (2019b).
Figure 3C-72. Diurnal distribution of hourly O₃ concentrations at monitoring sites in Phoenix.

Figure 3-8. Figure 3C-72 from US EPA (2019b).
Figure 3C-73. Diurnal distribution of hourly O₃ concentrations at monitoring sites in Sacramento.

Figure 3-9. Figure 3C-73 from US EPA (2019b).
Annual and summer mean and median hourly O₃ concentrations have been used by some researchers to characterize trends, assess human health long-term effects, and evaluate global models. However, because emission reductions result in the high end shifting downward and the low end of the distribution of hourly average O₃ concentrations shifting toward the mid-level values, the average or median values increase at some sites. There are varying levels of agreement between trends in mean and median concentrations versus different metrics associated with the higher hourly or 8-h average concentrations. Lefohn et al. (2018) reported that trends in the 8-h average metric (an index associated with the high end of the distribution) bear the least
resemblance to trends in the mean and median values with generally less than 50% of sites analyzed having trends in the same direction. Lefohn et al. (2018) reported overall that trends in the mean/median metrics were not representative of the trend behavior of those exposure metrics that focused on the higher end of the distribution. In Fig. 3-11 (reproduced from Lefohn et al., 2018), trend patterns for monthly average concentrations, annual SOMO35, and annual 4th highest daily maximum 8-h concentration (A4MDA8) exposure metrics at a suburban site in Philadelphia, Pennsylvania are compared. The SOMO35 is defined in the EU as the annual sum of the positive differences between the daily maximum 8-h O₃ average value and the cutoff value set at 35 ppb calculated for all days in a year. The monthly average concentrations significantly increased for seven of the 12 months, and were never estimated to decrease, while the SOMO35 and the A4MDA8 metrics, which focused on the higher hourly average concentrations, significantly decreased.

Figure 3-11. The Theil-Sen (%/year) trend in monthly average O₃ levels and the annual SOMO35 and 4th highest MDA8 human health metrics (A4MDA8) for a suburban site for 1980-2013 in Philadelphia, Pennsylvania (US EPA AQS ID: 421010024-1). The p < 0.05 value was used to determine significance using the Mann-Kendall test. (Source: Lefohn et al., 2018).
For the period 2000 – 2018, Figs. 3-12 and 3-13 illustrate a comparison of the annual 4th highest 8-h daily average concentrations with the annual averages of the hourly average concentrations for 5 sites (Simi Valley in southern CA; Queens, NY; Denali National Park, AK; Voyageurs National Park, MN; and Yellowstone National Park, WY. Note that the Simi Valley site in southern California does not experience exposures that are as high as the design values associated with sites located in San Bernardino County, where in most years the highest design values are experienced in the US. For the period 2016-2018, the design value was 0.111 ppm for two O3 sites in San Bernardino County. In Fig. 3-12, as anticipated, the two urban sites (i.e., Simi Valley and Queens, NY) experience the highest annual 4th highest daily maximum 8-h average O3 concentrations in comparison to the three rural National Park sites.

![Annual 4th Highest Daily Maximum 8-h Average Concentration 2000-2018](image)

Figure 3-12. The annual 4th highest daily maximum 8-h average O3 concentration for the period 2000-2018 for Simi Valley, CA (061112002), Queens New York, NY (360810124), Denali National Park, AK (020680003), Voyageurs National Park, MN (271370034), and Yellowstone National Park, WY (560391011).

When the annual average of the hourly average concentrations is calculated for the 5 sites, the Yellowstone National Park site exhibits the highest average concentration values (Fig. 3-13). The annual average values for Voyageurs National Park, Denali National Park, and Simi Valley are similar in value. The Queens, NY site experiences the lowest annual average values, which are increasing over time.
By calculating a long-term average concentration exposure metric, which combines all hourly values into one number, the highest hourly average concentrations in many cases no longer influence the resulting number because there are many more low- and mid-level values than the higher concentrations. The result of calculating a long-term average is that the values at many of the O₃ monitoring sites having similar values, even though some sites experience elevated hourly O₃ average concentrations and some do not. For example, in the annual mean figure (Fig. 3-13), the ordering of the sites from the highest to the lowest means would appear to be counter intuitive. While the Simi Valley site in southern California experiences the highest 8-h average O₃ exposures of the 5 sites (Fig. 3-12), the annual average concentration for the site is comparable to values for the National Park sites. The three National Park sites in the annual average figures do not experience high 8-h average concentration values comparable to many of the urban sites in the US. Based on the annual mean of hourly average concentrations, the high-elevation Yellowstone National Park site experiences much higher annual average values than any of the other 4 sites. The moderate (i.e., compared to many urban, suburban sites) hourly average O₃ concentrations experienced at Yellowstone National Park (WY) are influenced by frequent occurrences of stratospheric-tropospheric transport to the surface, which is a naturally occurring process that contributes to background O₃ levels (Lefohn et al., 2001, 2011, 2012, 2014; EPA, 2014a). Fig. 3-14 illustrates for 2007 (modeled background O₃ data provided by
EPA) the relationship between background O\textsubscript{3} levels (defined as apportionment-based USB and referred to as USB\textsubscript{AB}), stratospheric-tropospheric transport to the surface at the site (STT-S), and the observed ambient daily maximum 8-hourly average concentrations. The term USB\textsubscript{AB} will be discussed in Section 3.2. The frequency of STT-S trajectories that arrive at the surface at the site are greatest in the spring but occur throughout the year. Fig. 3-15 illustrates for the entire year (January-December 2006) similar results using Emission Influenced Background (EIB) estimates (see Lefohn et al., 2014) compared with the observed daily maximum 8-h average O\textsubscript{3} concentrations and daily STT-S trajectories. The trajectory model introduced by Wernli and Davies (1997) was used to identify days of high probability for STT trajectories to enhance surface O\textsubscript{3} at specific monitoring sites. The concept of EIB will be discussed as a measure for background O\textsubscript{3} in Section 3.2. An enhanced event occurred on 2 May 2006, when a maximum hourly average O\textsubscript{3} concentration of 89 ppb was measured at 19 UTC (Lefohn et al., 2011). The enhanced event can be seen in Fig. 3-15. There were over 140 STT trajectories that were estimated on that day to reach the surface at the O\textsubscript{3} monitoring site. Škerlak et al. (2019) have described the processes associated with this May 2006 event.

For the period 2000-2014, using data from the TOAR database (Schultz et al., 2017) and the Mann-Kendall nonparametric test, no statistically significant trends at the \(p < 0.05 \) value were observed at the Yellowstone National Park using either the seasonal 4th highest 8-h daily maximum concentration or the seasonal mean value metrics. Jaffe et al. (2018) in Figure S1 (in their supplement), found no trend at Yellowstone NP for the April-September period for the 4th highest 8-h daily maximum concentration for the 2000-2014 period. It is important that metrics used for assessing trends at sites influenced by natural stratospheric process include the entire 24-h period. For example, when calculating a metric, such as the 4th highest 8-h daily maximum concentration, the entire 24-h period is required to capture the influence of stratospheric events that enhance O\textsubscript{3} concentrations, which at times occur in the late evening or very early morning hours. Reviewing the STT-S daily events for Yellowstone National Park, background O\textsubscript{3} (i.e., USB\textsubscript{AB}) appears to play a predominant role in influencing the observed ambient levels of O\textsubscript{3}.
Figure 3-14. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB\textsubscript{AB}) 8-h daily maximum concentrations for Yellowstone National Park (AQS ID 560391011) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O\textsubscript{3} values. Daily USB\textsubscript{AB} 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
Figure 3-15. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted Emissions Influenced Background (EIB) 8-h daily maximum concentrations for Yellowstone National Park (AQS ID 560391011) for January-December 2006. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O$_3$ values. See Lefohn et al. (2014) for details how the estimated Emissions Influenced Background (EIB) and STT-S values are estimated. Source: Lefohn et al. (2014).

Using AQS data, information from the TOAR database (see Schultz et al., 2017) indicates that of 406 US sites that reported both annual and 4th highest MDA 8 values, 29% of the sites experienced increasing annual average concentrations for the period 2000-2014, while 65% had no trend, and 6% experienced decreasing annual average concentrations. The nonparametric Mann-Kendall test was used for testing for trends. Thus, a substantial number of the AQS sites show increasing trends using the annual average concentration metric.

The calculation of the annual mean concentration includes the low, middle, and high hourly average concentrations. Lefohn et al. (1998), Simon et al. (2015) and Lefohn et al. (2017, 2018) have discussed the effects of NO$_x$ emissions on hourly average O$_3$ concentrations. As pointed out in the draft PA (EPA, 2019b), the greater the amount of NO$_x$ emissions, the greater the frequency of high and low hourly average concentrations for many low-elevation monitoring
sites. Nitrogen oxides scavenge O₃, with the result that the frequency of low hourly average values increase, and the frequency of the higher hourly levels increase due to precursors production of O₃. Simon et al. (2015) discussed the effects of reducing O₃ precursors in the United States on O₃ concentrations. Using daily 8-h average concentrations, the authors reported that decreasing O₃ trends generally occurred in the summer, in less urbanized areas, and at the upper end of the O₃ distribution (i.e., the higher 8-h concentrations). Conversely, increasing O₃ trends generally occurred in the winter, in more urbanized areas, and at the lower end of the O₃ distribution. The authors noted that increasing fifth percentile trends (i.e., the trends in the lower end of the distribution) were more common in the more highly urbanized areas. Simon et al. (2015) indicated that as anthropogenic NOx emissions have decreased, the O₃ distribution has been compressed (i.e., less frequent high and low values), leading to less spatial and temporal variability. Lefohn et al. (2017, 2018) noted that there is both modeling and observational evidence that the reductions in the frequency of low levels (i.e., shifts of the lower levels upward) are associated with emissions reductions resulting in less O₃ titration by NOx. Based on this, one would anticipate that as emissions are reduced, that annual O₃ averages would increase, while the highest 8-h average concentrations would decrease. This is what has been reported in the literature (Lefohn et al., 2017, 2018).

As indicated earlier, during the 2015 O₃ rulemaking, EPA believed that both acute and chronic effects could be reduced by reducing the higher hourly average concentrations. As emissions were reduced, the higher part of the distribution of hourly average concentrations moved downwards toward the middle hourly average concentrations. However, if one believes that to eliminate “chronic” (i.e., long-term) effects from O₃ exposures one must decrease annual average concentrations, based on models and empirical data, this cannot be accomplished. By focusing on an emission reduction strategy to decrease the higher hourly average O₃ concentrations, the potential for chronic and acute health and vegetation effects are reduced (Federal Register, 2015).

3.1.2 Patterns of the Changes in What Months the Highest O₃ Concentrations Occur As Emissions are Reduced

In the US, we have experienced significant reductions in O₃ levels. Figure 3-16 below compares the 3-year average of the annual 4th highest 8-h value between 2001-2003 with 2014-2016. As a result of emission reductions to attain reductions in O₃ exposures, important changes have occurred in the months when the highest O₃ concentrations are observed. Using models, Figs. 3-17 to 3-24 (Figure 3C-75, page 3C-108) through Figure 3C-82, page 3C-115) display the same information as Figs. 3-3 to 3-10 (Figure 3C-67 through Figure 3C-74 in the draft PA) but for monthly rather than diurnal distributions. The figures below illustrate the modeling results presented in the draft PA document (EPA, 2019b) for the shifting of the higher mid-range concentrations from the summer season toward the earlier months as emissions are reduced to attain the three scenarios discussed earlier.
Comparing the 3-year average of the annual 4th highest 8-h value for 2001-2003 versus 2014-2016. Analyses provided to AS Lefohn by Tom Dann, Canada.

A.S.L. & Associates, Helena, MT

Figure 3-16. A comparison of the 3-year average of the annual 4th highest 8-h value for the period 2001-2003 with 2014-2016.
Figure 3C-75. Monthly distribution of hourly O₃ concentrations at monitoring sites in Atlanta.

Figure 3-17. Figure 3C-75 from US EPA (2019b).
Figure 3C-76. Monthly distribution of hourly O₃ concentrations at monitoring sites in Boston.
Figure 3-18. Figure 3C-76 from US EPA (2019b).
Figure 3C-77. Monthly distribution of hourly O₃ concentrations at monitoring sites in Dallas.

Figure 3-19. Figure 3C-77 from US EPA (2019b).
Figure 3C-78. Monthly distribution of hourly O₃ concentrations at monitoring sites in Detroit.

Figure 3-20. Figure 3C-78 from US EPA (2019b).
Figure 3C-79. Monthly distribution of hourly O₃ concentrations at monitoring sites in Philadelphia.

Figure 3-21. Figure 3C-79 from US EPA (2019b).
Figure 3C-80. Monthly distribution of hourly O₃ concentrations at monitoring sites in Phoenix.

Figure 3-22. Figure 3C-80 from US EPA (2019b).
Sacramento sites: 2015-2017

Figure 3C-81. Monthly distribution of hourly O$_3$ concentrations at monitoring sites in Sacramento.

Figure 3-23. Figure 3C-81 from US EPA (2019b).
Using its models, for the monthly plots for the 8 cities, the EPA notes in the draft PA (EPA, 2019b) on page 3C-99 the following:

Similar to the diurnal plots, the seasonal distributions become flatter when adjusted to meet the 70 ppb and 65 ppb scenarios, especially on the highest O$_3$ days. This is due to more O$_3$ decreases during summer months and more O$_3$ increases in winter months. The O$_3$ increases in the winter are consistent with the understanding that solar insolation rates are lower in the winter reducing total photochemical activity and shifting the net
effect of NOX emissions on O3 which can both create O3 through photochemical pathways and destroy O3 through titration. In addition, the decreases on the highest O3 days and increases on the lowest O3 days show a visible compression of the O3 distribution in these plots, similar to what was seen in the diurnal plots.

The modeling results showed changes for midrange O3 days for a pattern of shifting higher mid-range O3 from the summer months to earlier in the year. While in most cities, the highest interquartile O3 concentrations in the recent conditions occur in the summer months, in many areas the highest interquartile O3 concentrations shift to spring months (April-May) for the adjustment scenarios. This pattern can be seen in Detroit, Philadelphia, Phoenix, and St. Louis. In the previous analysis in the EPA Risk Exposure Assessment (EPA, 2014b), a similar pattern was observed in Atlanta, Baltimore, Boston, Denver, Los Angeles, New York, Philadelphia, Sacramento, and Washington D.C. This pattern is consistent with a greater contribution from non-U.S. anthropogenic sources at lower projected standard levels than under recent observed conditions. Two of these non-U.S. anthropogenic sources, stratospheric intrusions and international transport, have been shown to peak during the spring months as discussed in the draft ISA (EPA, 2019a page IS-13).

While the modeling results show the pattern of the shifting of the higher mid-range concentrations from the summer months toward the spring months as emissions are reduced, it is important to explore if modeling predictions are confirmed using actual hourly concentration data from O3 monitoring sites. Actual data do show that the highest O3 exposures occur at sites across the US during the springtime (March to mid-June). Using hourly average O3 data from 57 National Park Service Parks, the EPA in the 2014 PA (EPA, 2014c) (Welfare Appendix, page 7A-12) provided the highest 3-month W126 values and the timeframe corresponding to those W126 exposures for the Parks with O3 monitors for the period 2006-2010. Table 7A-2 is provided in the pages below. Note that several of the O3 monitors in the Parks experienced their highest W126 exposures during the spring months (defined as March, April, May or April, May, June) period. While the months of April, May, and June are not entirely a spring period (half of June is still spring), the time of year when the frequency of stratospheric intrusions (i.e., a natural process) to the surface is greatest at many sites during the March – June window. Lefohn et al. (2011, 2012) reported that stratosphere-to-troposphere transport to the surface (STT-S) frequently coincides with “enhanced” surface O3 concentrations (≥ 50 ppb) at both high- and low-elevation monitoring sites across the US during specific months, especially the spring. Dr. Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich in Switzerland, as a part of our international research team, applied a Lagrangian method, based on the approach introduced by Wernli and Bourqui (2002), to identify stratosphere-to-troposphere transport (STT) events down to the surface (i.e., STT-S events). The trajectory model introduced by Wernli and Davies (1997) was used to identify days of high probability for STT trajectories to enhance surface O3 at specific monitoring sites. It is important to note that the analysis of stratospheric intrusions and calculation of the SI parameter as described in Lefohn et al. (2011) captures the frequency and vertical penetration of the intrusions; it does not provide information about the O3 concentration within the intrusion. The O3 concentration in stratospheric intrusions down to the lower troposphere was expected to be highly variable due to concentration differences in the stratospheric origin and in chemical and mixing processes during the descent.
As noted in Lefohn et al. (2011), this variability can strongly affect any statistical associations between the enhanced hourly average concentrations \(\geq 50 \text{ ppb} \) used in their analysis and the number of stratospheric intrusions. Thus, Lefohn et al. (2011) chose the coincidence table approach that summarized the frequency of daily intrusions and the daily maximum hourly average \(\text{O}_3 \) concentrations and applied appropriate statistical tests. For the high-elevation sites in the western and eastern US, the STT-S coincidences occurred most frequently during spring. However, Lefohn et al. (2012) noted that coincidences between STT-S and enhanced \(\text{O}_3 \) concentrations occurred at times during the summer, fall, and late winter.

Great Smoky Mountains National Park (GRSM) is the most visited National Park in the United States. It is a relatively small park (\(\sim 210,433 \text{ ha} \)), but topographically complex, with an elevational range of 1757 m. The Park is located in parts of North Carolina and Tennessee. The name "Smoky" comes from the natural fog that often hangs over the range and presents as large smoke plumes from a distance. This fog is caused by the vegetation emitting volatile organic carbon chemicals that have a high vapor pressure and easily form vapors at normal temperature and pressure (Naranjo, 2011). The Park has historically been subject to elevated levels of pollutants, including \(\text{SO}_2 \), \(\text{O}_3 \), and \(\text{NO}_x \). Neufeld et al. (2019) analyzed \(\text{O}_3 \) trends from 1989 to 2016 for six monitoring sites in and adjacent to GRSM and ranging in elevation from 564m to 2030m. The W126 exposures increased between the years 1989–2002 and have substantially decreased afterwards. Similar to the pattern described in the modeling results in the draft PA, as emissions were reduced, at most of the six sites analyzed by Neufeld et al. (2019), the maximum 3-month W126 exposures shifted from mid-summer to the April–June period. Decreases in W126 exposures were correlated with lowered NO\(_x\) emissions from regional TVA power plants.

Besides the National Parks, a review of the data in EPA’s AQS database indicates that there are many \(\text{O}_3 \) monitoring sites at both high and low elevations across the US that exhibit highest exposures during the spring months. There are sites where maximum concentrations have shifted from summer to spring months, which confirms the predictions of the models. There are also sites where shifts may not have occurred because the maximum concentrations continue in most years to occur during the spring months. At sites influenced by STT-S, there is a tendency for the highest \(\text{O}_3 \) exposures to occur during the spring months, but some sites may experience STT-S contributions throughout the year (Lefohn et al., 2011, 2012, 2014). Figs. 3-14 and 3-15, shown previously on pages 58 and 59, illustrate that while the highest \(\text{O}_3 \) exposures at the high-elevation Yellowstone National Park site may occur during the spring months, enhanced \(\text{O}_3 \) levels exist throughout the entire year.
<table>
<thead>
<tr>
<th>Monitor site ID</th>
<th>Park Name</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>230090102</td>
<td>Acadia National Park</td>
<td>10.59</td>
<td>7.89</td>
<td>7.64</td>
<td>7.02</td>
<td>5.24</td>
<td>MJJ</td>
<td>AMJ</td>
<td>MJJ</td>
<td>MAM</td>
<td>MAM</td>
</tr>
<tr>
<td>230090103</td>
<td>Acadia National Park</td>
<td>6.37</td>
<td>6.41</td>
<td>4.72</td>
<td>5.21</td>
<td>4.13</td>
<td>MJJ</td>
<td>AMJ</td>
<td>MJJ</td>
<td>MAM</td>
<td>MAM</td>
</tr>
<tr>
<td>311651001</td>
<td>Agate Fossil Beds National Monument</td>
<td>--</td>
<td>8.27</td>
<td>12.76</td>
<td>5.85</td>
<td>--</td>
<td>--</td>
<td>JAS</td>
<td>MJJ</td>
<td>JJA</td>
<td>--</td>
</tr>
<tr>
<td>460710101</td>
<td>Badlands National Park</td>
<td>--</td>
<td>--</td>
<td>2.23</td>
<td>2.54</td>
<td>3.85</td>
<td>--</td>
<td>--</td>
<td>JAS</td>
<td>AMJ</td>
<td>JJA</td>
</tr>
<tr>
<td>460711101</td>
<td>Badlands National Park</td>
<td>16.74</td>
<td>8.01</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>JJA</td>
<td>JJA</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>480943101</td>
<td>Big Bend National Park</td>
<td>11.62</td>
<td>10.60</td>
<td>10.55</td>
<td>8.62</td>
<td>8.47</td>
<td>AMJ</td>
<td>MAM</td>
<td>MAM</td>
<td>MAM</td>
<td>MAM</td>
</tr>
<tr>
<td>370110002</td>
<td>Blue Ridge Parkway</td>
<td>9.88</td>
<td>11.46</td>
<td>8.81</td>
<td>4.71</td>
<td>8.19</td>
<td>AMJ</td>
<td>AMJ</td>
<td>AMJ</td>
<td>AMJ</td>
<td>AMJ</td>
</tr>
<tr>
<td>490370101</td>
<td>Canyonlands National Park</td>
<td>18.06</td>
<td>16.93</td>
<td>17.06</td>
<td>12.23</td>
<td>13.24</td>
<td>MJJ</td>
<td>MJJ</td>
<td>AMJ</td>
<td>MAM</td>
<td>AMJ</td>
</tr>
<tr>
<td>250010002</td>
<td>Cape Cod National Seashore</td>
<td>13.47</td>
<td>13.16</td>
<td>12.89</td>
<td>5.25</td>
<td>7.03</td>
<td>MJJ</td>
<td>MJJ</td>
<td>MJJ</td>
<td>AMJ</td>
<td>MJJ</td>
</tr>
<tr>
<td>350153001</td>
<td>Carlsbad Caverns National Park</td>
<td>--</td>
<td>8.65</td>
<td>17.50</td>
<td>11.37</td>
<td>7.09</td>
<td>--</td>
<td>AMJ</td>
<td>AMJ</td>
<td>MJJ</td>
<td>AMJ</td>
</tr>
<tr>
<td>160310001</td>
<td>City of Rocks National Reserve</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>6.02</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>80771001</td>
<td>Colorado National Monument</td>
<td>11.61</td>
<td>15.04</td>
<td>4.13</td>
<td>8.75</td>
<td>--</td>
<td>JJA</td>
<td>MJJ</td>
<td>JAS</td>
<td>AMJ</td>
<td></td>
</tr>
<tr>
<td>450790021</td>
<td>Congaree National Park</td>
<td>12.31</td>
<td>10.78</td>
<td>9.45</td>
<td>3.97</td>
<td>6.32</td>
<td>MAM</td>
<td>MAM</td>
<td>MAM</td>
<td>FMA</td>
<td>MAM</td>
</tr>
<tr>
<td>450210002</td>
<td>Cowpens National Battlefield</td>
<td>14.30</td>
<td>7.87</td>
<td>16.05</td>
<td>3.24</td>
<td>8.81</td>
<td>AMJ</td>
<td>MJJ</td>
<td>JJA</td>
<td>FMA</td>
<td>MAM</td>
</tr>
<tr>
<td>160230101</td>
<td>Craters of the Moon National Monument</td>
<td>--</td>
<td>10.17</td>
<td>10.88</td>
<td>5.68</td>
<td>7.82</td>
<td>--</td>
<td>JJA</td>
<td>MJJ</td>
<td>MAM</td>
<td>JAS</td>
</tr>
<tr>
<td>210131002</td>
<td>Cumberland Gap National Historical Park</td>
<td>--</td>
<td>18.36</td>
<td>10.12</td>
<td>3.58</td>
<td>7.31</td>
<td>--</td>
<td>MJJ</td>
<td>MJJ</td>
<td>MJJ</td>
<td>MJJ</td>
</tr>
<tr>
<td>60270101</td>
<td>Death Valley National Park</td>
<td>29.18</td>
<td>32.55</td>
<td>25.57</td>
<td>15.30</td>
<td>10.61</td>
<td>MJJ</td>
<td>MJJ</td>
<td>MJJ</td>
<td>JJA</td>
<td>JAS</td>
</tr>
<tr>
<td>560111101</td>
<td>Devil's Tower National Monument</td>
<td>--</td>
<td>7.09</td>
<td>5.42</td>
<td>5.44</td>
<td>--</td>
<td>--</td>
<td>JAS</td>
<td>JAS</td>
<td>JJA</td>
<td></td>
</tr>
<tr>
<td>490471002</td>
<td>Dinosaur National Monument</td>
<td>10.33</td>
<td>13.34</td>
<td>8.39</td>
<td>13.80</td>
<td>--</td>
<td>--</td>
<td>MJJ</td>
<td>MJJ</td>
<td>MJJ</td>
<td>MJJ</td>
</tr>
<tr>
<td>300298001</td>
<td>Glacier National Park</td>
<td>2.90</td>
<td>2.29</td>
<td>3.98</td>
<td>3.53</td>
<td>2.44</td>
<td>JJA</td>
<td>MAM</td>
<td>MAM</td>
<td>AMJ</td>
<td>AMJ</td>
</tr>
<tr>
<td>300351001</td>
<td>Glacier National Park</td>
<td>--</td>
<td>--</td>
<td>4.91</td>
<td>3.93</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>400380101</td>
<td>Grand Canyon National Park</td>
<td>21.66</td>
<td>18.68</td>
<td>17.02</td>
<td>10.10</td>
<td>14.95</td>
<td>MJJ</td>
<td>AMJ</td>
<td>AMJ</td>
<td>JJA</td>
<td>AMJ</td>
</tr>
<tr>
<td>320330101</td>
<td>Grand Basin National Park</td>
<td>15.54</td>
<td>15.79</td>
<td>16.94</td>
<td>10.19</td>
<td>11.44</td>
<td>JJA</td>
<td>MJJ</td>
<td>AMJ</td>
<td>AMJ</td>
<td>AMJ</td>
</tr>
<tr>
<td>370870036</td>
<td>Great Smoky Mountains National Park</td>
<td>11.46</td>
<td>13.35</td>
<td>11.50</td>
<td>4.59</td>
<td>7.89</td>
<td>AMJ</td>
<td>AMJ</td>
<td>AMJ</td>
<td>AMJ</td>
<td>AMJ</td>
</tr>
<tr>
<td>470090102</td>
<td>Great Smoky Mountains National Park</td>
<td>12.97</td>
<td>12.69</td>
<td>10.44</td>
<td>5.31</td>
<td>10.27</td>
<td>AMJ</td>
<td>MAM</td>
<td>MAM</td>
<td>MAM</td>
<td>MAM</td>
</tr>
<tr>
<td>471550101</td>
<td>Great Smoky Mountains National Park</td>
<td>18.87</td>
<td>20.66</td>
<td>14.15</td>
<td>9.03</td>
<td>15.16</td>
<td>AMJ</td>
<td>AMJ</td>
<td>MJJ</td>
<td>MAM</td>
<td>MAM</td>
</tr>
<tr>
<td>471550102</td>
<td>Great Smoky Mountains National Park</td>
<td>19.59</td>
<td>23.51</td>
<td>16.23</td>
<td>7.32</td>
<td>11.94</td>
<td>MJJ</td>
<td>JJA</td>
<td>MJJ</td>
<td>MJJ</td>
<td>ASO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitor site ID</th>
<th>Park Name</th>
<th>W126</th>
<th>3-Month Timeframe for W126</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2006</td>
<td>2007</td>
</tr>
<tr>
<td>180890022</td>
<td>Indiana Dunes National Lakeshore</td>
<td>8.79</td>
<td>12.21</td>
</tr>
<tr>
<td>60650008</td>
<td>Joshua Tree National Park</td>
<td>24.36</td>
<td>19.97</td>
</tr>
<tr>
<td>60651004</td>
<td>Joshua Tree National Park</td>
<td>--</td>
<td>26.37</td>
</tr>
<tr>
<td>60719002</td>
<td>Joshua Tree National Park</td>
<td>55.48</td>
<td>52.46</td>
</tr>
<tr>
<td>60893003</td>
<td>Lassen Volcanic National Park</td>
<td>18.97</td>
<td>15.10</td>
</tr>
<tr>
<td>80830101</td>
<td>Mesa Verde National Park</td>
<td>23.44</td>
<td>17.57</td>
</tr>
<tr>
<td>60711001</td>
<td>Mojave National Preserve</td>
<td>--</td>
<td>28.50</td>
</tr>
<tr>
<td>530530012</td>
<td>Mount Rainier Wilderness</td>
<td>3.19</td>
<td>3.30</td>
</tr>
<tr>
<td>530090016</td>
<td>Olympic National Park</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>530090014</td>
<td>Olympic National Park</td>
<td>--</td>
<td>0.28</td>
</tr>
<tr>
<td>482731001</td>
<td>Padre Island National Seashore</td>
<td>--</td>
<td>8.19</td>
</tr>
<tr>
<td>40170119</td>
<td>Petrified Forest National Park</td>
<td>19.16</td>
<td>16.60</td>
</tr>
<tr>
<td>40190021</td>
<td>Saguaro National Park</td>
<td>19.57</td>
<td>17.06</td>
</tr>
<tr>
<td>360910004</td>
<td>Saratoga National Historical Park</td>
<td>6.68</td>
<td>10.38</td>
</tr>
<tr>
<td>311570005</td>
<td>Scotts Bluff National Monument</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>61070006</td>
<td>Sequoia-Kings Canyon National Park</td>
<td>50.09</td>
<td>53.38</td>
</tr>
<tr>
<td>61070009</td>
<td>Sequoia-Kings Canyon National Park</td>
<td>66.07</td>
<td>62.88</td>
</tr>
<tr>
<td>511130003</td>
<td>Shenandoah National Park</td>
<td>16.43</td>
<td>14.40</td>
</tr>
<tr>
<td>380070002</td>
<td>Theodore Roosevelt National Park</td>
<td>7.71</td>
<td>5.54</td>
</tr>
<tr>
<td>380350002</td>
<td>Theodore Roosevelt National Park</td>
<td>9.45</td>
<td>6.29</td>
</tr>
<tr>
<td>271370034</td>
<td>Voyageurs National Park</td>
<td>5.33</td>
<td>5.19</td>
</tr>
<tr>
<td>460350132</td>
<td>Wind Cave National Park</td>
<td>20.52</td>
<td>12.20</td>
</tr>
<tr>
<td>503091011</td>
<td>Yellowstone National Park</td>
<td>12.98</td>
<td>9.96</td>
</tr>
<tr>
<td>60430002</td>
<td>Yosemite National Park</td>
<td>33.78</td>
<td>29.68</td>
</tr>
<tr>
<td>60431002</td>
<td>Yosemite National Park</td>
<td>--</td>
<td>12.60</td>
</tr>
<tr>
<td>60431003</td>
<td>Yosemite National Park</td>
<td>--</td>
<td>11.61</td>
</tr>
<tr>
<td>60431004</td>
<td>Yosemite National Park</td>
<td>--</td>
<td>6.95</td>
</tr>
<tr>
<td>60431005</td>
<td>Yosemite National Park</td>
<td>--</td>
<td>27.83</td>
</tr>
</tbody>
</table>

*Nine parks have more than 1 monitor

3.2 Background Ozone

3.2.1 Why is the Quantification and Spatial Distribution of Background O_3 Important?

It appears from reading both the draft ISA (EPA, 2019a) and the draft PA (EPA, 2019b) that the EPA is focused on answering the following question:

- How much of the current O_3 can be attributed to sources other than U.S. anthropogenic sources?

On page 2-23 in the draft PA, the authors note:

In this review, as in past reviews, the EPA generally characterizes O_3 concentrations that would exist in the absence of U.S. anthropogenic emissions as U.S. background (USB). An alternative phrasing is the O_3 concentrations created collectively from global natural sources and from anthropogenic sources existing outside of the U.S as USB. Such a definition helps distinguish the O_3 that can be controlled by precursor emissions reductions within the U.S. from O_3 originating from global natural and foreign precursor sources that cannot be controlled by U.S. regulations (draft ISA, section 1.2.2. (emphasis added).

A great deal of the focus by EPA in the modeling effort (page 1-49 of the draft ISA (EPA, 2019a)) appears to be on answering the above question as noted below:

- Applications of chemical transport models (CTMs) to estimate USB O_3 have found that USB concentrations are relatively constant with increasing total O_3 concentration, indicating that days with higher O_3 concentrations generally occur because of higher U.S. anthropogenic contributions (Dolwick et al., 2015).

- Based on these considerations, this section emphasizes USB on days with high O_3 concentration as the most relevant for discussing USB O_3, and wherever possible, the focus is on estimates of USB under these conditions because they are most relevant for evaluating the potential for a role of USB O_3 in contributing to the highest O_3 concentrations. Discussion of seasonal and monthly means of hourly data are also included because longer averaging times are relevant to assessments of health and ecological effects.

Continuing to focus on the contribution of USB on high O_3 days, page 1-57 in the draft ISA (EPA, 2019a) states:

- There is consistent evidence across several studies using different background measurement approaches that USB or other background concentration estimates on most days with high O_3 concentrations have been generally predicted to be similar to or smaller than seasonal mean USB O_3 estimates in the eastern U.S. and in urban and low-elevation areas of the western U.S., and an inverse relationship
between relative USB contribution and total O$_3$ concentration in these areas has been consistently predicted. This contrasts with high-elevation locations in the western U.S., where USB and NAB have been consistently predicted to increase with total O$_3$ concentration.

Further, in the draft PA (2019b), this focus continues on page 2-60 of the draft PA where the Agency provides reasons for its interest in background O$_3$ when it notes in its summary bullets:

- It is important to recognize that exceedances of the existing standards have a substantially higher model-predicted USA (anthropogenic) contribution than other days in both the West and the East.

- International contributions, in most places, are lowest during the season with the most frequent O$_3$ exceedances. Except for the near-border areas, the International contribution requires long-distance transport that is most efficient in Spring.

- The USA contributions that drive exceedances generally peak in summer. In this typical case, USB is overwhelmingly from Natural sources. The most notable exception is near the Mexico border where the modeling indicates that a combination of Natural and Canada/Mexico contributions can lead to total USB between 60-80 ppb on specific days, which is consistent with the previous O$_3$ Policy Assessment.

While it appears to that the Agency is focused on how much of the current O$_3$ can be attributed to sources other than U.S. anthropogenic sources on days when ambient levels exceed the standard, there are other considerations in the rulemaking process that are of equal importance to quantifying background O$_3$. As discussed above, EPA states on page 1-49 of the draft ISA (EPA, 2019a), that background seasonal and monthly means of hourly data are also included because longer averaging times are relevant for assessments of health and ecological effects. However, this statement is inaccurate. In many cases, assessment of human health and ecological effects are not based on longer averaging times. For the vegetation related W126 exposure index, which is not an average exposure metric, hourly average concentrations are weighted and accumulated over a specific period for assessing vegetation effects. Hourly average background O$_3$ concentrations contribute to the observed concentrations and therefore, contribute to the cumulative risk. For some human health risk assessments, daily maximum 8-h average concentrations are used in a time series. Daily maximum 8-h average concentrations contain background O$_3$ concentrations, which contribute to the estimated human health risk.

Background O$_3$ concentrations in the low- and mid-level part of the distribution of concentrations make up a large fraction of the total O$_3$ levels and the lower and mid-level concentrations influence mortality and morbidity risk estimates. It is important to quantify the importance of background O$_3$ in the low- and mid-range concentrations. Fig. 3-25 (reproduced from Fig. 9-8 on Page 9-32 from the 2014 HREA (EPA, 2014b)) illustrates the percent reduction in exposures and risks after just meeting alternative standards relative to just meeting the 2008 NAAQS of 75 ppb. In this plot, each row represents one of the key analytical results and each
column gives the results for 2007 and 2009 for each urban study area. The scales are the same between analyses, and as such, it is informative to examine both the overall patterns of change between alternative standards, and the absolute value of the percent reductions in risk metrics between analyses. The top row is the Exposure > 60 ppb; the second row is the Lung Function Risk (dFEV$_1$ > 10%); the third row is Mortality; the fourth row is Hospital Admissions. The risks associated with mortality and hospital admissions are much less than the risks associated with Exposure > 60 ppb and Lung Function Risk (dFEV$_1$ > 10%). This is because mortality and hospital admission risk metrics are based on non-threshold, approximately linear C-R functions, and therefore are sensitive to changes in O$_3$ along the full range of O$_3$ concentrations (page 9.30 of the 2014 Health REA (EPA, 2014b)). As explained by the Agency (EPA, 2014b), because O$_3$ in the lower concentration range may shift upward as the result of NOx emission reductions, this can lead to increases in risk on some days, which can lead to a net increase or decrease in risk over the entire year, depending on whether the days with increased risk exceed days with decreased risk (generally due to a preponderance of days with lower O$_3$ concentrations). Fig. 3-26 illustrates the percent of short-term mortality attributable to O$_3$ concentrations in the 25-55 ppb range for 2007. The data to create the figure were obtained from EPA (2014d) in Fig. 7-B1 on page 7-B3. In some cases, 90% or more of the accumulated risk is associated with the mid-range concentrations for cities across the U.S. The different colors represent the different standard scenarios considered in the 2014 Health REA (EPA, 2014b). Results shown from the 2014 Heath REA (EPA, 2014b) were similar for all 12 cities used in the 2014 epidemiological risk analyses. The mid-range concentrations (25-55 ppb) as emissions are reduced is where background O$_3$ will predominate. Fig. 3-27 illustrates the contribution of background to ambient levels of O$_3$ for 2006 in Houston, Texas (see Lefohn et al., 2014 for further details). A large percentage of the observed concentrations in the 25-55 ppb range are associated with background O$_3$ at the measured levels in 2006. As indicated in earlier discussions in this document, as emissions are reduced, for some sites, a compression of the distribution of concentrations shifts the lower concentrations upward and the higher concentrations downward. Thus, as shown in Fig. 3-27, background O$_3$ concentrations will be expected to increase their domination of the cumulative mortality health risk estimates.

Background O$_3$ concentrations become more and more important in influencing ambient levels as emission reductions are implemented. It is recognized by the Courts that NAAQS O$_3$ levels are set to protect public health and welfare and that background O$_3$ is not a consideration in setting these levels. In the draft PA (page 1-11), the EPA notes the following:

In the August 2019 decision, the court additionally addressed arguments regarding considerations of background O$_3$ concentrations, and socioeconomic and energy impacts. With regard to the former, the court rejected the argument that the EPA was required to take background O$_3$ concentrations into account when setting the NAAQS, holding that the text of CAA section 109(b) precluded this interpretation because it would mean that if background O$_3$ levels in any part of the country exceeded the level of O$_3$ that is requisite to protect public health, the EPA would be obliged to set the standard at the higher nonprotective level. Thus, the court concluded that EPA did not act unlawfully or arbitrarily or
capriciously in setting the 2015 NAAQS without regard for background ozone.

However, for practical purposes, if the standard were to be set at a level that ambient O₃ levels consisted of almost all background O₃, then the setting of such a level under these circumstances would not be a standard, but a goal that would not necessarily be achievable. By understanding the range of hourly average background O₃ concentrations, scientists can better place into perspective their human health and vegetation results and ask the question: “How can my results be valid if the exposures that I have used are at or below background O₃ levels?” It is important to note that the range of background O₃ concentrations at a specific site is different than the range at other monitoring sites in the same geographic location. Each site is unique. Thus, quantifying the range of background O₃ concentrations at a specific location may be more relevant than determining the range of O₃ concentrations on a large geographic regional scale.

Figure 3-25. Figure 9-8 from US EPA (2014b).
Figure 3-26. Percent short-term ozone-attributable mortality in the 25-55 ppb range for various exposure conditions for 2007 for 7 of 12 cities. (Source: Data from Fig. 7-B1 on page 7-B3 of EPA, 2014d).
3.2.2 How is the Term Background O_3 Defined?

From the previous section, it appears that the EPA desires to answer the question “How much of the current O_3 can be attributed to sources other than U.S. anthropogenic sources?” While the Agency is focused on how much of the current O_3 can be attributed to sources other than U.S. anthropogenic sources on days when ambient levels exceed the standard, as discussed previously, quantifying background O_3 is also important for assessing human health and ecological effects risks.

While background O_3 cannot be measured directly, estimating it accurately by utilizing both empirical and modeling approaches is important. Under a variety of meteorological conditions, background O_3 can make a substantial contribution to levels that result in exceedances of Federal standards when (1) episodic events occur under relatively clean conditions (Zhang et al., 2011; Lin et al., 2012a; Emery et al., 2012; Lefohn et al., 2014; Dolwick et al., 2015; Jaffe et al., 2018) and (2) local photochemical production combines with background levels that enhance the ambient concentrations (Lefohn et al., 2014; Dolwick et al., 2015). Background O_3 is of interest because (1) at times background O_3 is associated with high
concentrations experienced in the US Intermountain West that affect attainability of O$_3$ air quality standards (Lefohn et al., 2001; Langford et al., 2009; McDonald-Buller et al., 2011; Lin et al., 2012a; Dolwick et al., 2015) and (2) background O$_3$ contributes on a continuous basis to observed concentrations that influence human health and vegetation risk estimates, whose values influence recommended levels for Federal O$_3$ standards (McDonald-Buller et al., 2011; EPA, 2014a, 2014b). While considerable discussion in the US has focused on background contributions to the human health Federal O$_3$ primary standard, elevated background concentrations associated with stratospheric intrusions can affect vegetation (Skelly, 2000; FLAG, 2010).

The term “background O$_3$” in the United States over the years has not been defined consistently (McDonald-Buller et al., 2011; Lefohn et al., 2014; EPA, 2014a). EPA (2006) defined North American background (NAB) O$_3$ (previously referred to as Policy-Relevant Background by the US EPA) to include contributions from global anthropogenic and natural sources in the absence of North American (i.e., US, Canada, and Mexico) anthropogenic emissions. NAB O$_3$ is the range of concentrations that an air quality model estimates would exist in the absence of North American anthropogenic emissions. In 2013, the US EPA (2013) modified its definition of background by introducing the terminology US background (USB) O$_3$ concentrations. The level of USB O$_3$ is defined to include contributions from global anthropogenic and natural sources in the absence of US anthropogenic emissions. In other words, the USB O$_3$ concentration is defined as the O$_3$ concentration that would occur if all U.S. anthropogenic O$_3$ precursor emissions were removed (draft ISA, Page ES-3). The difference associated with the hypothetical estimates using models of NAB O$_3$ and USB O$_3$ is small (EPA, 2013).

Recognizing that NAB O$_3$ and USB O$_3$ are estimated background concentrations that reflect hypothetical zero anthropogenic emissions, Lefohn et al. (2014) explored a new metric that estimated background O$_3$ levels under current anthropogenic emission conditions. The authors, using source-apportionment based modeling, referred to these background estimates as Emissions-Influenced-Background (EIB) O$_3$. The authors defined Emission-influenced Background (EIB) O$_3$ to include contributions from natural sources throughout the globe and from anthropogenic sources outside of North America. EIB O$_3$ estimates the impact of background sources, even in situations in which local O$_3$ has been influenced by US anthropogenic emissions. In August 2014 in its PA, the EPA (2014a) described estimates of source-apportionment US Background (USB$_{AB}$). The EPA (2014a) defined source-apportionment based US Background (USB$_{AB}$) in a similar manner as EIB O$_3$, except that USB$_{AB}$ O$_3$ includes anthropogenic sources from Canada and Mexico. Similar to EIB, USB$_{AB}$ estimates the impact of background sources, even in situations in which local O$_3$ has been influenced by US anthropogenic emissions (see Dolwick et al., 2015 for further clarification).

An important advantage in estimating either EIB O$_3$ or USB$_{AB}$ background is that policymakers have an indication of (1) the relationship between current daily background levels and daily observed O$_3$ concentrations and (2) the level of O$_3$ concentration that may occur as a result of implementing emissions reductions strategies. For example, if EIB O$_3$ or USB$_{AB}$ O$_3$ concentrations have a large relative contribution to observed O$_3$ concentrations at a specific
location, one would anticipate that emissions reductions on a regional scale would not have much impact on the concentrations at that site.

In the previous PA (EPA, 2014a), research results based on natural background were presented. Natural background O$_3$ is defined as the O$_3$ concentrations that would occur if all anthropogenic emissions were removed worldwide. Processes that contribute to natural background O$_3$ include O$_3$ transport from the stratosphere and O$_3$ formed from precursor emissions originating from wildfires, lightning, natural methane sources, plants, and other natural VOC and NO$_X$ emissions.

On page 1-6 of the draft ISA, the authors mention *Baseline ozone* as an alternative metric for USB and NAB. Baseline O$_3$ has been defined as the measured O$_3$ concentration at rural or remote sites that have not been influenced by recent, local emissions (Jaffe et al., 2018). In contrast to USB, baseline O$_3$ is directly measured. Baseline measurements are typically from monitors in locations that are minimally influenced by local anthropogenic sources, and samples used as baseline measurements are limited to those monitored during meteorological conditions consistent with the relative absence of local contamination. Baseline O$_3$ can include the O$_3$ produced from U.S. emissions that circle the globe and may also include effects of same-state emissions. An example of the latter would be O$_3$ from U.S. emissions near the West Coast or Gulf Coast that is transported over the Pacific Ocean or Gulf of Mexico, respectively, and then transported back onshore. In some cases, sources that impact baseline O$_3$ may not similarly impact O$_3$ in populated locations. For instance, baseline O$_3$ measured on a mountaintop may include stratospheric influences that are not representative of contributions in nearby lower elevation locations.

The draft ISA points out (Page 1-7) that there are several reasons why baseline O$_3$ measurements cannot be used as a proxy to estimate USB O$_3$ levels in urban areas. As previously described, baseline O$_3$ can include contributions from U.S. emissions. Additionally, baseline O$_3$ monitors can be very distant from urban sites, and O$_3$ measured at the baseline site can be destroyed through surface deposition or chemical reactions during transport from the baseline site to a downwind monitor. In addition, atmospheric conditions may not favor transport of baseline O$_3$ from the monitor location to populated areas at lower elevations. The draft ISA also points out that another reason why baseline O$_3$ measurements cannot be used as a proxy for USB O$_3$ levels (using the zero-out methodology) in urban areas is that meteorological conditions that favor mixing from the free troposphere to ground level have strong ventilation and are not conducive to photochemical O$_3$ episodes that produce the highest urban O$_3$ concentrations. However, as noted in the ISA, stratospheric intrusion events are an exception. The draft ISA concludes (Page 1-7) that while baseline O$_3$ measurements cannot be used directly to estimate USB (zero-out methodology) O$_3$, baseline O$_3$ data are useful for evaluating the CTMs that are used to provide model estimates of USB (zero-out) O$_3$.

In summary, the following terms have been used in the draft ISA to describe background O$_3$:

- USB is defined to include contributions from global anthropogenic and natural sources in the absence of US anthropogenic emissions.
• NAB has been defined as the O\textsubscript{3} concentration that would occur in the U.S. in the absence of anthropogenic emissions in continental North America (U.S. EPA, 2013). NAB has also been referred to as policy-relevant background (PRB) in earlier publications (U.S. EPA, 2007).

• Emissions-influenced background (EIB) has been defined as another measure of background O\textsubscript{3} estimated from source apportionment modeling approaches while including chemical interactions with anthropogenic emissions (Lefohn et al., 2014).

• Source-apportionment US Background (USB\textsubscript{AB}) is the amount of O\textsubscript{3} formed from sources other than U.S. anthropogenic sources as estimated via an apportionment technique (Dolwick et al., 2015). USB\textsubscript{AB} O\textsubscript{3} includes anthropogenic sources from Canada and Mexico.

• Natural background O\textsubscript{3} is defined as the O\textsubscript{3} concentrations that would occur if all anthropogenic emissions were removed worldwide. Processes that contribute to natural background O\textsubscript{3} include O\textsubscript{3} transport from the stratosphere and O\textsubscript{3} formed from precursor emissions originating from wildfires, lightning, natural methane sources, plants, and other natural VOC and NO\textsubscript{X} emissions.

• Baseline O\textsubscript{3} has been defined as the measured O\textsubscript{3} concentration at rural or remote sites that have not been influenced by recent, local emissions (Jaffe et al., 2018). The draft ISA points out (Page 1-7) that there are several reasons why baseline O\textsubscript{3} measurements cannot be used as a proxy to estimate USB O\textsubscript{3} levels in urban areas.

USB, as well as USB\textsubscript{AB}, is a model construct that cannot be measured using ambient monitoring data. The draft ISA (EPA, 2019a) notes that this approach is consistent with the 2006 Ozone Air Quality Criteria Document (AQCD) (U.S. EPA, 2006a) and the 2013 Ozone ISA (U.S. EPA, 2013), which also used modeled estimates of background O\textsubscript{3}. Reliance on atmospheric modeling for USB, as well as USB\textsubscript{AB} concentrations estimates, continued in the 2013 Ozone ISA (U.S. EPA, 2013). In earlier assessments, O\textsubscript{3} estimates were based on measurements at monitoring sites with low concentrations that appeared to be isolated from anthropogenic sources (Altshuller and Lefohn, 1996; Trainer et al., 1993).

3.2.3 EPA’s Preference for the Use of USB Rather than Other Definitions of Background

EPA has preferred to use USB methodology for estimating background O\textsubscript{3}. No clear reason is provided why the authors of the draft ISA preferred the USB (i.e., zero-out) approach rather than other modeling methodologies, for characterizing background O\textsubscript{3} in the document. On page 1-4, the draft ISA notes:

In this document, the term U.S. background (USB) is used to assess background ozone (emphasis added). The USB concentration is defined
as the ozone concentration that would occur if all U.S. anthropogenic ozone precursor emissions were removed.

The authors further note on page 2-34 of the draft PA:

The methodologies reviewed range in complexity from simply turning off U.S. anthropogenic (or specific sources) emissions, to normalizing derivatives from instrumented models, to complex tagging techniques (e.g., CAMx OSAT, APCA, or Grewe, 2013). This analysis follows the zero-out approach for simplicity of interpretation and consistency with previous analyses.

On page 2-59 of the draft PA, the authors state:

The overall findings of this assessment are consistent with the 2014 O\textsubscript{3} PA, with the EPA’s Background Ozone whitepaper (U.S. EPA, 2015), and with the peer reviewed literature.

In the EPA White Paper (EPA, 2015) that is referred to in the draft PA, the Agency noted that

For the purposes of this white paper and the continuing discussion of background O\textsubscript{3} issues in the NAAQS implementation context, the EPA considers background O\textsubscript{3} to be any O\textsubscript{3} formed from sources or processes other than U.S. manmade emissions of nitrogen oxides (NO\textsubscript{x}), volatile organic compounds (VOC), methane (CH\textsubscript{4}), and carbon monoxide (CO). This definition of background is specifically referred to as U.S. background (USB).8

While the EPA in its White Paper (EPA, 2015) apparently made a unilateral decision to use USB rather than USB\textsubscript{AB} in defining the term “background O\textsubscript{3}”, no clear rationale was apparently provided.

On page 1-5 of the draft ISA, the EPA notes that modeling approaches for estimating background O\textsubscript{3} can be classified as either source-sensitivity or source-apportionment approaches. USB was originally estimated using source-sensitivity approaches. Apportionment-based USB (USB\textsubscript{AB}) has been defined as the amount of O\textsubscript{3} formed from sources other than U.S. anthropogenic sources as estimated via an apportionment technique (Dolwick et al., 2015). In the 2014 Policy Assessment (EPA, 2014), the Agency discussed both USB and USB\textsubscript{AB}.

The draft ISA notes on page 1-52:

The zero-out approach is more suited for answering the question “what ozone levels would exist in the absence of all U.S. emissions?” while the source apportionment approach is more suited for answering the question “what amount of current ozone comes from background sources?” The
difference between USB and USB\textsubscript{AB} is small in remote areas most strongly affected by USB sources, but can be substantial in urban areas strongly affected by anthropogenic sources that influence both production and destruction of ozone (Dolwick et al., 2015).

Given that the EPA has chosen to use USB rather than USB\textsubscript{AB}, it must be remembered that USB estimates will represent a quantity never to occur in the real atmosphere (EPA, 2014a). As noted in the 2014 PA document (EPA, 2014a), sensitivity approaches (i.e., USB) can be unreliable for evaluating mass contributions to O\textsubscript{3} production because of nonlinearity in the chemistry.

The US EPA (2014a) noted that the strength of the source-apportionment approach (i.e., USB\textsubscript{AB}) is that it provided a direct estimate of the amount of O\textsubscript{3} contributed by each source category, while avoiding artifacts caused by non-linearity in the chemistry, which is a potential with the zero emissions (i.e., zero-out) modeling used to estimate USB O\textsubscript{3} concentrations. Table 3-1 below (original labeled Table 2-1 on page 2-15 in EPA, 2014a) is reproduced from the EPA’s Policy Assessment document (EPA, 2014a). The table compares the two model methodologies used to characterize USB (i.e., zero-out) and USB\textsubscript{AB} (apportionment based).

As noted in the draft ISA (EPA, 2019a) (Page IS-15):

- Both approaches are essential and complementary for understanding and estimating USB ozone. The zero out approach is suited for determining what ozone levels would have existed in recent modeled years in the absence of all U.S. emissions, while the source apportionment approach is suited for determining the fraction of current ozone originating from background sources in recent modeled years.

As noted above, a key point made in the draft ISA (page 1-52) is that the difference between USB and USB\textsubscript{AB} is small in remote areas most strongly affected by USB sources, but can be substantial in urban areas strongly affected by anthropogenic sources that influence both production and destruction of O\textsubscript{3} (Dolwick et al., 2015).
Table 2-1 Comparison of the two model methodologies used to characterize background ozone levels.

<table>
<thead>
<tr>
<th>Estimation Methodology</th>
<th>Question addressed</th>
<th>Background Quantities</th>
<th>Strengths and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-out</td>
<td>How much ozone would remain if controllable emissions were completely removed?</td>
<td>NB / NAB / USB</td>
<td>Strength: The approach is simple to implement and provides an estimate of the lowest O₃ levels that can be attained by eliminating all U.S. anthropogenic emissions. Limitation: Estimates are based on a counterfactual, represents a quantity never to occur in real atmosphere. Additionally, sensitivity approaches can be unreliable for evaluating mass contributions to O₃ production because of non-linearity in the chemistry.</td>
</tr>
<tr>
<td>Source Apportionment</td>
<td>How much of the current ozone can be attributed to sources other than U.S. anthropogenic sources?</td>
<td>Apportionment-based USB</td>
<td>Strength: Provides a direct estimate of the amount of O₃ contributed by each source category while avoiding artifacts caused by non-linearity in the chemistry. Limitation: While this approach identifies important sources that contribute to O₃, it does not predict quantitatively how O₃ will respond to specific emissions reduction scenarios.</td>
</tr>
</tbody>
</table>

Table 3-1. A comparison of the two model methodologies used to characterize background O₃ levels. Source: Source: US EPA (2014a).

The distinction between USB and USB_AB is important because apportionment techniques for estimating USB_AB are designed to realistically treat nonlinear and nonadditive interactions of USB and U.S. anthropogenic emissions that affect both production and destruction of O₃. In contrast, source-sensitivity modeling approaches originally used for estimating USB are not designed to address these interactions. As pointed out in the draft ISA (page 1-5), USB and USB_AB are not the same quantity estimated with different approaches but are estimates of
conceptually different quantities. While USB is an estimate of \(O_3\) concentrations that could be achieved if U.S. anthropogenic sources were eliminated, \(USB_{AB}\) is an estimate of how much \(O_3\) can be attributed to background sources when those anthropogenic sources are present.

As pointed out in Table 3-1 above (Table 2-1 in the 2014 PA), the USB approach is simple to implement and provides an estimate of the lowest \(O_3\) levels that can be attained by eliminating all US anthropogenic emissions. The table also notes that the USB estimates are based on a counterfactual, represents a quantity never to occur in the real atmosphere. As noted in the 2014 PA document (EPA, 2014a), sensitivity approaches can be unreliable for evaluating mass contributions to \(O_3\) production because of nonlinearity in the chemistry. The USB\(_{AB}\) approach provides a direct estimate of the amount of \(O_3\) contributed by each source category, while avoiding artifacts caused by non-linearity in the chemistry. As noted in the 2014 PA (EPA, 2014a), while the approach identifies important sources that contribute to \(O_3\), it does not predict quantitatively how \(O_3\) will respond to specific emissions reductions scenarios. However, it is reasonable to assume that as emissions were reduced with the result that current \(O_3\) levels at the high end were reduced and the lower levels shifted toward the mean due to reduction in \(NO_x\) levels, the USB\(_{AB}\) would increase to levels above the USB\(_{AB}\) estimates based on current \(O_3\) levels. In other words, background \(O_3\) would make up a higher fraction of the levels observed in future \(O_3\) levels achieved with emission reductions.

As pointed out in Table 3-1 (Table 2-1 in the 2014 PA), it appears that USB\(_{AB}\) should be used rather than USB to answer the question “How much of the current \(O_3\) can be attributed to sources other than U.S. anthropogenic sources?”

A quantitative understanding of background \(O_3\) is essential for air quality management. This is especially true given the recent lowering of the NAAQS \(O_3\) levels and the associated increasing relative importance of background \(O_3\) as domestic precursor emissions decrease.

Thus, we are left with the dilemma of why the EPA estimated USB rather than USB\(_{AB}\) for better clarifying background \(O_3\) levels. Simply stating that its analysis follows the zero-out approach for simplicity of interpretation and consistency with previous analyses is not a strong rationale. In the previous NAAQS \(O_3\) rulemaking, the Policy Assessment document in 2014 (EPA, 2014a) included discussion of USB\(_{AB}\) estimates of background \(O_3\) because of the importance of the estimates in answering the regulatory questions. The EPA estimated 2007 seasonal (i.e., April through October) mean USB MDA8 \(O_3\) concentrations using a combination of the GEOS-Chem global model and the Community Multi-scale Air Quality (CMAQ) (zero out) and CAMx (source apportionment) regional models. Dolwick et al. (2015) summarized for the western US both the USB and USB\(_{AB}\) findings contained within the Policy Assessment document (EPA, 2014a). EPA in the 2014 PA estimated USB\(_{AB}\) levels for understanding and estimating background \(O_3\) for determining the fraction of current \(O_3\) originating from background sources in recent modeled years. The use of only background \(O_3\) estimates associated with USB (i.e., the zero-out modeling and its non-linearity chemistry problems) may result in more inconsistency than would have occurred if USB\(_{AB}\) had been estimated.

3.2.4 EPA’s Conclusion on Background \(O_3\) Modeling Estimates
EPA (draft ISA, page 1-56) notes that while the seasonal mean USB concentration patterns may be important for identifying atmospheric processes leading to high USB concentrations, **they are less relevant for estimating USB concentrations on days with high MDA8 concentrations and for understanding the role that hourly average background O3 concentrations play in affecting human health and vegetation risk estimates.** On page 1-5 of the draft ISA, the EPA notes that the averaging time of a USB estimate is intended to match the averaging time of the total O3 concentration measured. In other words, if the EPA desired to determine the percentage of background O3 associated with the top ten daily maximum 8-h concentrations during the year at a specific monitoring site, the background O3 must be reported in daily maximum 8-h concentrations.

Focusing on the seasonal means, whose values may be of interest to scientists attempting to understand atmospheric processes, on Page 1-55 in the draft ISA (EPA, 2019a), the EPA notes that the 2013 Ozone ISA (U.S. EPA, 2013) reported higher mean USB and NAB concentration estimates in spring than in summer for most regions of the U.S, and these results are consistent with earlier modeling estimates. However, EPA notes that some new results are consistent with this pattern (e.g., Lefohn et al., 2014), while other results suggest that summer USB and baseline O3 concentrations can be comparable to (Jaffe et al., 2018) or greater than (Guo et al., 2018) spring concentrations. Guo et al. (2018) reported region-wide seasonal mean USB concentrations greater in summer than spring for most U.S. regions. The authors proposed that improvement of isoprene-NOX chemistry was the reason for the difference in results compared to previous results that indicated springtime was the period of greatest background O3 contributions.

EPA in the draft ISA (page 1-55) believes the disagreement among researchers to be significant because numerous studies of USB and other measures of background O3 have focused on spring as the season with the greatest USB concentrations. The draft ISA (page 1-55) notes that

1. Recent publications have come up with conflicting conclusions about seasonal trends in USB. Higher seasonal mean USB concentrations in spring than in winter were reported for intermountain western sites (Fiore et al., 2014).

2. Fiore et al. (2014) reported higher seasonal mean NAB concentrations in spring than in summer at high-elevation western U.S. sites, consistent with the 2013 Ozone ISA (EPA, 2013).

3. Region-wide seasonal mean USB concentrations greater in summer than spring were reported for most U.S. regions (Guo et al., 2018). Improvement of isoprene-NOX chemistry was proposed as the reason for the difference in results compared with earlier modeling results like those of (Fiore et al., 2014).

4. Jaffe et al. (2018) reported comparable median spring and summer baseline ozone concentrations at elevations >1 km in the western U.S., while below 1-km baseline ozone concentrations were higher in spring.
The authors of the draft ISA did not resolve the conflicting conclusions about when seasonal mean background O$_3$ is greatest. I suggest that further discussion is warranted concerning the inconsistencies in the results. Currently, the draft ISA appears to dismiss the inconsistencies by indicating that seasonal mean USB metrics are less relevant for estimating USB concentrations when focusing on days with high MDA8 concentrations, as well as for understanding the role that hourly average background O$_3$ concentrations play in affecting human health and vegetation risk estimates.

On page 17 of Jaffe et al. (2018), the authors note that model-calculated USB O$_3$ was greatest in March through June, which agrees with the observations when stratospheric contributions are greatest at many high- and low-elevation sites across the U.S. (Lefohn et al., 2011, 2012). Jaffe et al. (2018) summarized their findings as follows concerning the seasonal behavior of background O$_3$:

Model-calculated USB O$_3$ is greatest in March through June, with monthly mean MDA8 mole fractions at higher elevations in the west of up to 50 ppb and annual 4th highest MDA8 values exceeding 60 ppb at some locations. Lower elevation cities nationwide have monthly mean USB O$_3$ of 20–40 ppb during the O$_3$ season. Daily variations, particularly in spring and early summer, can be due to stratospheric intrusions mixed with Asian pollution, which can contribute to observed MDA8 values over 70 ppb.

Using baseline O$_3$ data (Fig. 2 of Jaffe et al., 2018), Jaffe et al. (2018) illustrate the vertical profiles of O$_3$ at 4 sites in the West (Trinidad Head, Cheeka Peak, Mt. Bachelor Observatory, and Chews Ridge). The authors note that at low elevations at the four sites, mean spring O$_3$ levels are about 10 ppb higher than summer values, whereas above 1 km, median spring and summer values are comparable with summer.

Guo et al. (2018) note that their model may exaggerate the relative importance of enhanced background O$_3$ resulting from soil NOx and isoprene. The authors noted in their paper that substantial biases in the severity and timing of high-O$_3$ events occurred in their model and that the model underestimated the frequency of high events in spring that they indicated were possibly associated with stratospheric intrusions. These important uncertainty statements mentioned in their paper may help explain their finding that USB O$_3$ tended to be higher in the summer than in the spring in most regions.

In the draft PA, the authors summarize their conclusions from the EPA’s updated background O$_3$ modeling results for the year 2016. These conclusions are as follows:

- This analysis focused on characterizing USB from Natural, International and USA contributions. For the analysis of the International component, the contributions from India, China, and international shipping peak during the spring when MDA8 O$_3$ is typically low. (page 2-59).
- For this analysis we did not attempt to quantify the contributions from individual Natural sources (e.g., lightning, soil, fires, stratosphere) or to address exceptional events beyond basic screening to remove very large fire plumes. (page 2-59).

- The USA contributions that drive exceedances generally peak in summer. In this typical case, USB is overwhelmingly from Natural sources. The most notable exception is near the Mexico border where the modeling indicates that a combination of Natural and Canada/Mexico contributions can lead to total USB between 60-80 ppb on specific days, which is consistent with the previous O₃ Policy Assessment. (page 2-60).

- Consistent with previous assessments, USB is higher in the West than in the East. (page 2-59).

- It is important to recognize that exceedances of the existing standards have a substantially higher model-predicted USA (anthropogenic) contribution than other days in both the West and the East. (page 2-60).

- International contributions, in most places, are lowest during the season with the most frequent O₃ exceedances. Except for the near-border areas, the International contribution requires long-distance transport that is most efficient in Spring. (page 2-60).

- The West has higher USB concentrations than the East, which includes higher contributions from International and Natural sources. Within the West, high-elevation and near-border areas stand out as having particularly high USB. The high-elevation areas have more International and Natural contributions than low-interior areas in the same region. The near-border areas in the West can have substantially more international contribution than other parts of the West. (page 2-60).

- Natural and USA O₃ contributions peak in July, which is in the middle of the traditional O₃ season, while long-range intercontinental transport of international O₃ peaks in the spring. (page 2-58).

- The natural contribution has a single maximum in late summer in the West, whereas, in the East there is evidence of two peaks— the largest in late Spring and a second peak in early Fall. (page 2-44).

- The Natural component of USB exhibits the largest magnitude difference between the West and East. In the West, the Natural component of USB increases with time from winter through the spring with a maximum value in late summer. (page 2-59).

- The contributions from Canada/Mexico and Natural sources peak during the summer. (page 2-59).
• Near the U.S./Mexico border, International contributions peak in late spring or early summer. (page 2-59).

• The international sources have a larger contribution in the West than in the East, but during the traditional O₃ season, the largest differences between the West and East USB were attributed to Natural sources. (page 2-59).

• International and USA contributions peak at different times of the year and the contribution of International is often at its minimum when local sources are the driving factor for high O₃. (page 2-58).

• The West-East differences are largely associated with USB in near-border areas and at high-elevation locations. (page 2-59).

• In the northern hemisphere, the natural NOₓ sources with the largest emissions are lightning (9.4 megatonN/yr), soils (5.5 megatonN/yr), and wildland fires (~2.2 megatonN/yr). (page 2-59).

• Because NOₓ is the limiting precursor at hemispheric scales, the emissions data suggests that lightning and soils contribute are most likely the largest contributors to Natural O₃. As noted by Lapina et al. (2014), a large contribution from lightning may be the result of lightning strikes outside the U.S. while the contribution from soil NOₓ tends to largest from emissions within the U.S. The distant lightning source is likely to have its effect as part of the well-mixed background. The local soil NOₓ emissions have a clear seasonal cycle and is known to have large local contributions. (page 2-59).

• Wintertime O₃ associated with emissions from oil and gas production in the West can create high concentrations under certain meteorological conditions during seasons associated with efficient long-range transport. However, the conditions associated with these events result in isolating local air masses from the upper atmosphere, which reduce the influence of long-range transport compared to other winter days. (page 2-59).

In the draft PA, the EPA provides summary figures that are output from the 2016 USB analysis. For Fig. 3-28 (reproduced from Fig. 2-20 in the draft PA), the authors note on page 2-44 of the draft PA the following:

The temporal pattern in the regional average clearly shows that the seasonality of each component of total O₃ varies by region. The natural contribution has a single maximum in late summer in the West, whereas, in the East there is evidence of two peaks—the largest in late Spring and a second peak in early Fall. The somewhat lower MDA8 O₃ in summer in the East requires further analysis but may be related to the lack of lightning emissions within the regional domain. The seasonality in
international contribution is more similar between the two regions. The international contributions in both the West and East are greatest in Spring, but the contribution in the West is larger both at its peak and its trough, compared to the East. The total international contribution and the separately analyzed long-distance components (e.g., China, India, international shipping) peak in spring when O₃ lifetimes favor long-range transport. However, the Canada/Mexico component of international peaks in summer because of the relative proximity to the U.S. receptors. The USA contribution increases in the summer for both the West and the East, but the USA contribution in the West is smaller than in the East. As mentioned previously, this “all cells” average is disproportionately rural in the West. The following analysis looks further at the different types of land in the West, including urban areas that are more representative of population centers that behave differently than the “all cells” analysis.

Figure 2-20. Annual time series of regional average MDA8 O₃ concentration and 8-hour contributions (see legend) for the West (top), and the East (bottom). Natural is global natural sources, Intl is international anthropogenic sources, USA is U.S. anthropogenic sources, and Res-Anth is the residual anthropogenic (see Table 2-2 for further descriptions).
Figure 3-28. Annual time series of regional average MDA8 O₃ concentration and 8-h contributions for the West (top) and the East (bottom). See legend above from the original figure. Source EPA (2019b).

On page 2-45 of the draft PA, the authors note that Figure 2-21 (page 2-47 in the draft PA) illustrates the contributions to the West split into three parts: the highest elevation areas, the near border areas, and Low/Interior areas with a weighted average focusing on urban areas. Fig. 3-29 is from the draft PA (EPA, 2019b). The authors note the following:

The urban area weighted average shows higher contribution from USA while Natural and International are lower compared to Figure 2-20. The differences between urban-weighted and non-weighted contributions are smaller in the East (not shown) than in the West (compare Figure 2-20 top and Figure 2-21 bottom). Compared to the West, the East has a larger fraction of land use that is urban (see Figure 2-19), which explains this difference. Thus, the non-weighted regional average contributions in the East includes the effects of urban areas much more so than the West. The seasonality of International is also different between the highest elevation areas, near border areas, and urbanized areas. At low/interior and at high-elevation sites, the International contribution peaks earlier in the year than at border sites. This earlier season peak is consistent with seasonality of O₃ lifetime necessary for long-range transport. At near-border sites, the seasonal cycle of contributions from Canada/Mexico and from long-range transport combine to create a maximum later in the spring or early summer.
Figure 2-21. Annual time series of regional urban area-weighted average MDA8 O₃ concentration and 8-hour contributions (see legend) for the High-elevation West (top), near-border West (middle), and Low/Interior West (bottom). Natural is global natural sources, Intl is international anthropogenic sources, USA is U.S. anthropogenic sources, and Res-Anth is the residual anthropogenic (see Table 2-2 for further descriptions).
Figure 3-29. Annual time series of regional urban area-weighted average MDA8 O₃ concentration and 8-h contributions for the High-elevation West (top), near-borderer West (middle), and Low/Interior West (bottom). See legend above from the original figure. Source EPA (2019b).

Earlier we had discussed why background O₃ is important. While seasonal mean background O₃ estimates are of interest for identifying atmospheric processes, their use in assessing the role of background O₃ on exceedance days, as well as in human health and vegetation risk analyses, is limited. The time series of 8-h average daily maximum concentrations of background O₃ is important for some human health risk analyses and hourly average background O₃ concentrations are important for vegetation risk analyses. It appears in the reading the draft ISA and draft PA that the EPA is focused on understanding the percent contribution of background O₃ to current ambient levels on days when ambient levels exceed the standard. However, as noted earlier, there are other considerations in the rulemaking process that are of equal importance to quantifying background O₃. In many cases, assessment of human health and ecological effects is based on understanding the role that background O₃ plays throughout the distribution of hourly average concentrations and not just the role that background O₃ plays during periods of highest O₃ exposures. For the vegetation related W126 exposure index, each hourly average concentration is weighted and accumulated over a specific period for assessing vegetation effects. Hourly average background O₃ concentrations contribute to the observed concentrations and therefore, contribute to the cumulative risk. For some human health risk assessments, daily 8-h average concentrations are used in a time series. Daily maximum 8-h average concentrations contain background O₃ concentrations, which contribute to the estimated human health risk.

3.2.5 How much of the current ozone can be attributed to sources other than U.S. anthropogenic sources?

To answer the question of how much of the current O₃ can be attributed to sources other than U.S. anthropogenic sources both USB_AB (EPA, 2014; Dolwick et al., 2015) and EIB (Lefohn et al., 2014) daily estimates are used for illustrative purposes. Besides focusing on the highest hourly average O₃ concentrations (i.e., the upper end of the distribution of hourly values), it is important to understand the relative role that background O₃ plays over the entire distribution of total ambient O₃ concentrations. For example, for the human health risk associated with epidemiological models using no cutoff (i.e., threshold), the lower end of the distribution plays an important role. Background O₃ contributes a large amount to the lower concentrations and cannot be reduced with reductions in emissions. For example, the high-elevation Yellowstone National Park site in Wyoming is dominated by background O₃ throughout the year with minor anthropogenic contributions (Lefohn et al., 2014). In Figure 3-30 below, the relative comparison of EIB background levels (noted by blue) to anthropogenic (noted by red) within each concentration level shows that background contributes greater than 80%, including the mid-range concentrations (20-25 ppb), which was an important range that influenced EPA’s human health risk estimates in 2014. As noted above, EIB O₃ for 2006 is similar to the USB_AB estimates for 2007 utilized by the EPA (2014) in its Policy Assessment document in 2014 (EPA, 2014a). In comparison, Figure 3-31 illustrates for Denver the
contribution of background within the mid-range concentrations is approximately 75 to 80%. For the Los Angeles area (Figure 3-32), a site heavily influenced by anthropogenic emissions, background contributes 60-80% in the mid-range.

![Relative Contribution of Background to Observed Ozone](image)

Figure 3-30. Average relative contributions of current hourly background (blue) and anthropogenic O₃ (red) for Yellowstone NP (WY) (AQS ID 560391011) in 2006. (Source: Lefohn et al., 2014).
Figure 3-31. Average relative contributions of current hourly background (blue) and anthropogenic O₃ (red) for Denver (CO) (AQS ID 080590006) in 2006. (Source: Lefohn et al., 2014).
Figure 3-32. Average relative contributions of current hourly background (blue) and anthropogenic O₃ (red) for Los Angeles (CA) area (AQS ID 060719004) in 2006. (Source: Lefohn et al., 2014).

On page 2-23 of the EPA’s Policy Assessment document (EPA, 2014a), Fig. 3-33 below (Fig. 2-15 in EPA, 2014a) illustrates the distributions of the relative proportion of apportionment-based U.S. Background (USBAB) to total O₃ (all site-days), binned by modeled MDA8 from the 2007 source apportionment simulation. The figure indicates that the USBAB concentrations play a very important role in both the low and mid-range total O₃ concentrations (EPA, 2014a).
Figure 3-33. Distributions of the relative proportion of apportionment-based U.S. Background (USB_{AB}) to total O_{3} (all site-days), binned by modeled MDA8 from the 2007 source-apportionment simulation. Source: Fig. 2-15 in EPA (2014a) with slight modification.

Fig. 3-34 below (Fig. 1-14b on Page 1-59 of draft ISA) illustrates CAMx estimates of daily distributions of bias-adjusted USB_{AB} O_{3} fraction at monitoring locations across the western US for the period April–October 2007, binned by base model MDA8 O_{3} concentration ranges. Similar to the results presented in EPA’s Policy Assessment document (EPA, 2014a), the USB_{AB} concentrations play a very important role in both the low and mid-range total O_{3} concentrations.
On page 1-1 of the draft ISA, the authors note that U.S. background ozone continues to account for a large fraction of ambient ozone concentrations as a result of stratospheric exchange, international transport, wildfires, lightning, global methane emissions, and natural biogenic and geogenic precursor emissions. New results concerning U.S. background ozone are (1) a wider range of concentration estimates, and poorer agreement between models have been observed than were reported in the 2013 Ozone ISA, with a range of uncertainty of ~10 ppb for seasonal average concentrations, (2) U.S. background concentrations are uncorrelated with local ground-level concentrations above ~60 ppb, and (3) an increasing trend of U.S. background concentration at high elevation western U.S. sites before approximately 2010 now shows signs of slowing or even reversing, probably (emphasis added) due to decreasing East Asian precursor emissions.

Item (2) above indicates that background O₃ concentrations do not increase with total O₃ concentration above 60 ppb and according to Dolwick et al. (2015) this results in decreasing predicted relative contributions of background O₃ to total O₃ at the higher total O₃ concentrations (page 1-56). The draft ISA pointed out (page 1-56) that Lefohn et al. (2014) also described a
decreasing predicted relative contributions of background O_3 to total O_3 (identified by the authors as “Emissions Influenced Background”) contribution with increasing total O_3 concentration. At low-elevation and urban sites in the western U.S., O_3 concentrations estimated as USB, USB$_{AB}$, NAB, or EIB contributions were also reported to be independent of overall O_3 concentration, resulting in a decreasing relative background contribution with increasing total O_3 concentration (Guo et al., 2018a; Guo et al., 2018b; Dolwick et al., 2015; Lefohn et al., 2014). However, model results do show increasing USB$_{AB}$ and NAB predicted relative contributions of background O_3 to total O_3 with increasing O_3 concentration at high-elevation western U.S. sites (Fiore et al., 2014; Lefohn et al., 2014).

3.2.6 Sources of Background Ozone

On page 1-1 of the draft ISA, the authors conclude that U.S. background O_3 continues to account for a large fraction of ambient O_3 concentrations as a result of stratospheric exchange, international transport, wildfires, lightning, global methane emissions, and natural biogenic and geogenic precursor emissions. At noted in the draft ISA, as the literature on background O_3 has evolved, much of the discussion has focused on the relative importance of stratospheric O_3 and intercontinental transport as the major sources of background O_3 (Page IS-13 of the draft ISA).

On Page IS-13 of the draft ISA, the authors note that tropospheric O_3 derived from stratosphere-troposphere dynamics was described in detail in the 2013 Ozone ISA (U.S. EPA, 2013). Stratospheric air naturally rich in O_3 can be transported into the troposphere under certain meteorological circumstances, with maximum contributions observed at midlatitudes during the late winter and early spring. This process, known as “tropopause folding,” is characterized by episodic events typically lasting a few days from late winter through spring when deep stratospheric intrusions rich in O_3 can quickly and directly well into the troposphere and, more rarely, reach ground level (U.S. EPA, 2013). The 2013 Ozone ISA (U.S. EPA, 2013) also discussed the potential importance of deep convection, another form of stratosphere-troposphere exchange that occurs mainly in summer, as a mechanism for transporting stratospheric O_3 into the upper troposphere. Stratospheric intrusion events related to frontal passage and tropopause folding that reach the surface have less influence on surface O_3 during the summer months.

The relevance of stratospheric-to-tropospheric transport (STT) for influencing low-tropospheric O_3 concentrations has been well documented (e.g., Reed, 1955; Junge, 1962; Danielsen, 1968; Danielsen, 1974; Danielsen and Mohnen, 1977; Ludwig et al., 1977; Shapiro, 1980; Haagenson et al., 1981; Davies and Schuepbach, 1994; Lamarque and Hess, 1994; Schuepbach et al., 1999; Stohl et al., 2000; Lefohn et al., 2001; Cooper et al., 2005; Cristofanelli et al., 2006; Hocking et al., 2007; Ordóñez et al., 2007; Langford et al., 2009; Akriditis et al., 2010; Cristofanelli et al., 2010; Škerlak et al. (2014, 2019). Lefohn et al. (2001) (authors A.S. Lefohn, S.J. Oltmans, T. Dann, and H.B. Singh) described the contribution of stratospheric O_3 to observed O_3 levels across the U.S. The authors attributed STT processes to the observation that hourly average O_3 concentrations ≥ 50 ppb occurred frequently during the photochemically quiescent months in the winter and spring at several rural sites across southern Canada and the northern US. In their paper, the authors described an STT event, where the stratosphere contributed on May 6, 1999 to enhanced O_3 concentrations in Boulder, Colorado. Data were
provided courtesy of A. Langford of NOAA-Boulder. Eight years later, Langford et al. (2009) discussed the May 6, 1999 contribution of stratosphere-to-troposphere transport to high surface O₃ along the Colorado Front Range using lidar and surface measurements. In their paper, the authors indicated that the magnitude of O₃ background was controversial and that Lefohn et al. (2001) described that frequent occurrences of 50–80 ppb O₃ at remote northern U.S. sites during springtime (1988 to 1998) implied that significantly higher background values occurred. Langford et al. (2009) noted that Lefohn et al. (2001) attributed these high O₃ values to a larger stratospheric source than was shown in models and suggested that it might be difficult to satisfy the NAAQS for O₃ in locations where the stratospheric influence was significant.

Langford et al. (2009) indicated that others disputed the Lefohn et al. (2001) findings and used results from models to argue that the high-O₃ episodes described by Lefohn et al. (2001) could be explained by subsidence of free tropospheric air contaminated by North American anthropogenic sources and thus, did not represent true background values. Langford et al. (2009) felt that the modeling results were at odds with many other studies, which have presented evidence for significant stratospheric contributions to surface O₃ at both high-altitude sites (Schuepbach et al., 1999; Stohl et al., 2000) and near sea level (Cooper et al., 2005; Hocking et al., 2007). Langford et al. (2009) showed additional examples of deep STT contributing to high surface O₃ using lidar and surface measurements from the Front Range of the Colorado Rocky Mountains during the 1999 O₃ season (March–October). Their results showed that the stratospheric source was not only significant but could directly lead to exceedances of the 2008 NAAQS standards in a major metropolitan area. Langford et al. (2009) described a deep tropopause fold brought ∼215 ppb of O₃ to within 1 km of the highest peaks in the Rocky Mountains on 6 May 1999. One-minute average O₃ mixing ratios exceeding 100 ppb were subsequently measured at a surface site in Boulder, and daily maximum 8-h O₃ concentrations greater or equal to the 2008 NAAQS O₃ standard of 0.075 ppm were recorded at 3 of 9 Front Range monitoring stations. Other springtime peaks in surface O₃ were also shown to coincide with passage of upper level troughs and dry stable layers aloft. The authors noted that their results showed that the stratospheric contribution to surface O₃ was significant and could lead to exceedance of the 2008 NAAQS O₃ standards in a major U.S. metropolitan area.

Lefohn et al. (2011), using trajectory calculations, investigated the frequency of STT events and their associated enhancements on 12 surface O₃ monitoring sites in the western and northern tier of the US. The trajectory model introduced by Wernli and Davies (1997) was used to identify days of high probability for STT trajectories to enhance surface O₃ at specific monitoring sites. For most of the sites analyzed, Lefohn et al. (2011) indicated that contributions from stratosphere-to-troposphere transport to the surface (STT-S) were frequent during specific months and appeared to enhance the surface O₃ concentrations at both high- and low-elevation monitoring. Lefohn et al. (2012), quantified the frequency of STT events that result in O₃ concentration enhancements (i.e., hourly average concentrations ≥ 50 ppb) observed at 39 high- and low-elevation monitoring sites in the US during the years 2007-2009. They employed a forward trajectory-based approach to address the relationship between stratospheric intrusions and enhancements in hourly average O₃ concentrations. Their results indicated that STT down to the surface (STT-S) frequently contributed to enhanced surface O₃ hourly averaged concentrations at sites across the US, with substantial year-to-year variability. The O₃ concentrations associated with the STT-S events appeared to be large enough to enhance the
measured O₃ concentrations during specific months of the year. Months with a statistically significant coincidence between enhanced O₃ concentrations and STT-S occurred most frequently at the high-elevation sites in the Intermountain West, as well as at the high-elevation sites in the West and East. These sites exhibited a preference for coincidences during the springtime and in some cases, the summer, fall, and late winter. Besides the high-elevation monitoring sites, low-elevation monitoring sites across the entire US experienced enhanced O₃ concentrations coincident with STT-S events. Škerlak et al. (2014) noted that STT processes, which contribute to background O₃, affect the Intermountain West and other mountain ranges in the West year around, with a clear peak during the spring.

The STT-S counts, as has been estimated using the methodology described in Lefohn et al. (2011, 2012), have been compared with actual O₃ data. In the EPA AQS database, hourly average O₃ concentrations are at times marked with various coding by the state or tribe entity responsible for collecting the data. One specific code is “RO”. The code signifies that the governmental entity responsible for reporting the hourly O₃ data into the EPA’s AQS database plans to submit a demonstration that the value(s) should be excluded from the NAAQS calculations for attainment purposes. The Fig. 3-35 below illustrates for a site in the Denver area (AQS ID 080590006) for May 2012 the relationship between the STT-S trajectories described above and calculated by Professor Heini Wernli (Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland) and the “RO” codes embedded in the site’s hourly data file in the AQS database. All hourly average O₃ concentrations in the AQS database from May 26 at 2000 through May 29 at 0100 local standard time (LST) were designated with an “RO” code. An hourly average O₃ concentration of 80 ppb was recorded on May 27, 2012 at 0300 LST, which would be 1000 GMT on the figure below. The STT-S counts appear to agree well with the “RO” designations in the AQS database for this site. Similar comparison agreements between STT-S trajectories and observed values have been described (Lefohn et al., 2011).
Figure 3-35. Relating STT-S counts for every six hours (GMT) with “RO” codes for a site in Jefferson County, Colorado (AQS ID 080590006) for May 2012. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.

On page IS-14 of the draft ISA, the authors state that international transport from Asia has also been identified as a major source of precursors that contribute about 5 to 7 ppb to USB O₃ concentrations over the western U.S. (U.S. EPA, 2013b, 2006a, b). Ozone precursor emissions from China and other Asian countries have been estimated to have more than doubled in the period 1990–2010, and an estimated increase of 0.3 to 0.5 ppb/year of mid-tropospheric O₃ USB in spring over the western U.S. in the two decades after 1990 was largely attributed to a tripling of Asian NOₓ emissions. However, after this period, trends in NOₓ emissions from China, the largest O₃ precursor source in Asia, have declined as confirmed by rapidly decreasing satellite derived tropospheric NO₂ column measurements over China since 2012. Stringent air quality standards implemented in 2013 within China have markedly reduced national emissions.

On page IS-14 of the draft ISA, the authors note that other contributors (i.e., wildfires, lightning, global methane emissions, and natural biogenic and geogenic precursor emissions) to USB are either smaller or more uncertain than stratospheric and intercontinental contributions. EPA notes on page 1-1 of the draft ISA that an increasing trend of U.S. background concentration at high-elevation western U.S. sites before approximately 2010 now shows signs of slowing or even reversing, probably due to decreasing East Asian precursor emissions. I would urge caution in drawing conclusions about the anticipated effects in the U.S. as a result of emission reductions in China.
Lefohn et al. (2017) analyzed trends using hourly average O$_3$ concentrations from monitoring sites in Hong Kong and mainland China. The authors noted the following:

The changes in O$_3$ concentration distribution at the Chinese sites were most commonly associated with shifts towards higher concentrations, with the result that the metrics either increased in magnitude or showed no trend. Although NOx emissions reductions occurred over a short time frame toward the end of the study period, mainland China and Hong Kong exhibited increasing trends in many of the exposure metrics. Although speculative, possible reasons for not observing significant trend reductions in the exposure metrics in China may be associated with the need for a longer period than six years (2010-2015) for emission changes to influence the metric trend patterns. In addition, the scarcity of monitoring stations could possibly contribute to lack of clear trend patterns. Year-to-year variability of meteorology could be a large factor in not observing decreases in the exposure metrics. In addition, further reductions in NOx levels may be required before decreasing trends are observed. At many of the Chinese sites, O$_3$ formation is sensitive to VOCs rather than NOx; VOCs have been increasing in mainland China (Ohara et al., 2007).

Lefohn et al. (2017) further noted

In contrast to decreasing emissions in the EU and US, emissions of NOx have increased until recently in mainland China. Conversely, in Hong Kong, there have been large reductions in local emissions of both NOx and VOC since 1997. However, peak ambient O$_3$ concentrations have not decreased due to the contribution of long-range transport from increasing O$_3$ levels from mainland China (Xue et al., 2014). NOx emissions in China peaked around 2010-2011 and have since decreased (Duncan et al., 2016). Distribution changes at sites in China were most commonly associated with shifts towards higher concentrations.

There is inconsistency on the influence of long-range transport from Asia on western high-elevation O$_3$ monitoring sites. Long-range transport from Asia has not influenced trend patterns at all western US high-elevation O$_3$ monitoring sites. Not all high-elevation western U.S. sites have exhibited statistically significant trends during the springtime, when transport is expected to be highest from Asia. An evaluation of trend patterns of high-elevation western US sites during the springtime, using the 4th highest daily maximum 8-h concentration exposure metric, shows that some sites do not experience increasing trends over the period 2000-2014. Using TOAR data (Schultz et al., 2017), Table 3-2 illustrates the trend patterns for spring (March-May) and summer (June-August) for 13 O$_3$ monitoring sites. Although not high-elevation sites, Glacier National Park (MT) and Denali National Park (AK) have the potential to provide additional information concerning the effects of long-range transport from Asia on O$_3$ exposures. Oltmans et al. (2010) observed an O$_3$ episodic enhancement during April 2008 from biomass burning effluent from Eurasia that resulted in unusually high O$_3$ readings for this time of year in the western US. At Denali National Park in central Alaska, an hourly average of 79 ppb was recorded during an 8-h period in which the average was over 75 ppb, exceeding the O$_3$
ambient air quality standard threshold value in the U.S. The 8-h daily maximum at Yellowstone on 19 April (i.e., 69 ppb) suggests an enhancement during the period of suspected plume influence of 5-10 ppb above the other relatively high naturally caused O₃ values observed at the WY site. In Table 3-2, the nonparametric Mann-Kendall (M-K) test was used for testing for trends (see Lefohn et al., 2018 for additional information on the use of the M-K statistical method).

Table 3-2. Spring and summer trend patterns for the 4th highest daily maximum 8-h concentration exposure for 13 O₃ monitoring sites in the West for the March-April-May (MAM) and June-July-August (JJA) periods.

<table>
<thead>
<tr>
<th>Site</th>
<th>Site ID</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elev. (m)</th>
<th>MAM Trend</th>
<th>JJA Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gothic</td>
<td>080519991</td>
<td>38.9564</td>
<td>-106.99</td>
<td>2926</td>
<td>No</td>
<td>Negative</td>
</tr>
<tr>
<td>Glacier NP</td>
<td>300298001</td>
<td>48.5103</td>
<td>-114</td>
<td>964</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Yellowstone NP</td>
<td>560391011</td>
<td>44.5654</td>
<td>-110.4</td>
<td>2430</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pinedale</td>
<td>560359991</td>
<td>42.9288</td>
<td>-109.79</td>
<td>2388</td>
<td>No</td>
<td>Negative</td>
</tr>
<tr>
<td>Rainier NP</td>
<td>530530012</td>
<td>46.7841</td>
<td>-121.74</td>
<td>1615</td>
<td>No</td>
<td>Negative</td>
</tr>
<tr>
<td>Lassen Volcanic NP</td>
<td>0606893003</td>
<td>40.54</td>
<td>-121.58</td>
<td>1755</td>
<td>No</td>
<td>Negative</td>
</tr>
<tr>
<td>Yosemite NP</td>
<td>060430003</td>
<td>37.7133</td>
<td>-119.71</td>
<td>1599</td>
<td>No</td>
<td>Negative</td>
</tr>
<tr>
<td>Great Basin NP</td>
<td>320330101</td>
<td>39.0051</td>
<td>-114.22</td>
<td>2058</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Mesa Verde NP</td>
<td>080830101</td>
<td>37.1984</td>
<td>-108.49</td>
<td>2170</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Denali NP</td>
<td>020680003</td>
<td>63.7232</td>
<td>-148.97</td>
<td>663</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chiricahua NM</td>
<td>040038001</td>
<td>32.0094</td>
<td>-109.39</td>
<td>1569</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Grand Canyon NP</td>
<td>040058001</td>
<td>36.0586</td>
<td>-112.18</td>
<td>2070</td>
<td>No</td>
<td>Negative</td>
</tr>
<tr>
<td>Canyonlands NP</td>
<td>490370101</td>
<td>38.4583</td>
<td>-109.82</td>
<td>1794</td>
<td>No</td>
<td>Negative</td>
</tr>
</tbody>
</table>

NP=National Park
NM=National Monument

The draft ISA attributes increasing trend patterns observed at high-elevation western U.S. sites to long-range transport from Asia. As discussed above, I suggest that the authors indicate caution in drawing the strong conclusions currently in the document about the impact of long-range transport on western high-elevation O₃ monitoring sites, as well as anticipated changes as a result of emission reductions in Asia.

3.2.7 What do we know about the seasonal pattern of stratospheric-to-tropospheric transport to the surface (STT-S) and why is it important?

The EPA’s White Paper (EPA, 2015) stated the following:

Away from the earth’s surface, O₃ can have an atmospheric lifetime on the order of weeks. As a result, background O₃, and to a lesser extent background O₃ precursors, can be transported long distances in the upper troposphere and be
available to mix down to the surface when conditions are favorable. One of the largest natural sources of O\textsubscript{3} originates from production of O\textsubscript{3} in the stratosphere through interactions between ultraviolet light and molecular oxygen. O\textsubscript{3} exists in large quantities in the stratosphere and natural atmospheric exchange processes can transport stratospheric air into the troposphere. During certain meteorological conditions, discrete plumes of stratospheric air can be displaced far into the troposphere and impact ground-level O\textsubscript{3} concentrations. These events are called stratospheric intrusions and can result in relatively high USB levels of O\textsubscript{3} at the surface, especially at higher-elevation sites. Other natural sources of O\textsubscript{3} precursor emissions include wildfires, lightning, and vegetation. Biogenic emissions of methane, which can be chemically converted to O\textsubscript{3} over relatively long time scales, can also contribute to USB O\textsubscript{3} levels. Finally, manmade precursor emissions from other countries can contribute to the global burden of O\textsubscript{3} in the troposphere and to increased USB O\textsubscript{3} levels.

In addition, page 1-24, the draft ISA states:

Deep stratospheric intrusions are common in the western U.S., impacting high elevation locations during the springtime. The incidence of tropopause folds is greatest in the early part (late winter and spring) of the year when synoptic-scale midlatitude cyclones are most active, occurring near upper level frontal zones where Rossby wave breaking is prevalent (Langford et al., 2017; Škerlak et al., 2015; U.S. EPA, 2013; Lin et al., 2012a).

Figs. 3-36, 3-37, 3-38, 3-39, and 3-40 illustrate as examples the daily maximum 8-h average concentration (MDA8) USB\textsubscript{AB} estimates, observed daily MDA8 values, and the daily STT-S counts for Yellowstone National Park (WY), Jefferson County (CO), Rocky Mountain National Park (CO), Lassen Volcanic National Park (CA), and Sacramento (CA). For the Yellowstone National Park site, it appears that STT-S plays an important role during the April-October period. During the summer, when the STT-S counts are strongly reduced at the other three sites, USB\textsubscript{AB} is slightly reduced at the high-elevation Jefferson and Rocky Mountain National Park sites and therefore, periods occur with “gaps” between observed values and USB\textsubscript{AB}, likely attributable to anthropogenic sources. The amplitude of the “gap” varies strongly between the four sites. During rare events of STT-S > 0 in summer (e.g., Lassen, end of July and end of August), the two curves (i.e., total observed O\textsubscript{3} and USB\textsubscript{AB}) approach one another, indicating that STT-S episodes can also occur in summer with the result there is a close agreement between observed values and USB\textsubscript{AB}. For the Sacramento site, STT-S events occur during the spring and fall months. Gaps (i.e., the difference between the observed total O\textsubscript{3} and USB\textsubscript{AB} concentrations) occur from mid-May through September, indicating the apparent influence of anthropogenic sources. STT-S events occur across the US at all elevations with the result that USB\textsubscript{AB} contributes in varying amounts (depending upon season and elevation of the site) to the observed O\textsubscript{3} concentrations across the US. USB\textsubscript{AB}, while important in the high-elevation sites in the western US, is also important at low-elevation sites across the US (Lefohn et al., 2011, 2012, 2014).
Figure 3-36. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB_AB) 8-h daily maximum concentrations for Yellowstone National Park (WY) (AQS ID 560391011) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O₃ values. Daily USB_AB 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
Figure 3-37. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB_{AB}) 8-h daily maximum concentrations for Jefferson County (CO) (AQS ID 080590006) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O_3 values. Daily USB_{AB} 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
Figure 3-38. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB_{AB}) 8-h daily maximum concentrations for Rocky Mountain National Park (CO) (AQS ID 080690007) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O3 values. Daily USB_{AB} 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
Figure 3-39. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB\textsubscript{AB}) 8-h daily maximum concentrations for Lassen Volcanic National Park (CA) (AQS ID 060893003) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O\textsubscript{3} values. Daily USB\textsubscript{AB} 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
Figure 3-40. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB\textsubscript{AB}) 8-h daily maximum concentrations for Sacramento (CA) (AQS ID 060670012) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O\textsubscript{3} values. Daily USB\textsubscript{AB} 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.

3.2.8 Observed Ozone Exposure Patterns and Why the Patterns are Important

There appear to be substantial differences between (1) the most current background O\textsubscript{3} modeling results performed by the EPA and presented in the draft PA and (2) the EPA results performed in 2014 PA (EPA, 2014a), as well as other results published in the literature. On pages 2-30 and 2-31 of the 2014 PA (EPA, 2014a), the authors state the following:

For a variety of reasons, it is challenging to present a comprehensive summary of all the components and implications of background O\textsubscript{3}. In many forums the term “background” is used generically and the lack of specificity can lead to confusion as to what sources are being considered. Additionally, it is well established that the impacts of background sources can vary greatly over space and time which makes it difficult to present a simple summary of background O\textsubscript{3} levels. Further, background O\textsubscript{3} can be generated by a variety of processes, each of which can lead to differential patterns in space and time, and which often have different regulatory ramifications. Finally, background O\textsubscript{3} is difficult to measure and thus, typically requires air quality modeling which has inherent uncertainties and
potential errors and biases. That said, EPA believes the following concise and
three step summary of the implications of background O\textsubscript{3} on the NAAQS review
is appropriate, as based on previous modeling exercises and the more recent EPA
analyses summarized herein. First, background O\textsubscript{3} exists and can comprise a
considerable fraction of total seasonal mean MDA\textsubscript{8} O\textsubscript{3} and W126 across the U.S.
Air quality models can estimate the fractional contribution of background sources
to total O\textsubscript{3} in an individual area. The largest absolute values of background (NB,
NAB, USB, or apportionment-based USB) are modeled to occur at locations in
the intermountain western U.S. and are maximized in the *spring and early*
summer seasons (emphasis added). Second, the modeling indicates that U.S.
anthropogenic emission sources are the dominant contributor to the majority of
modeled O\textsubscript{3} exceedances of the NAAQS. Higher O\textsubscript{3} days generally have smaller
fractional contributions from background. This finding indicates that the relative
importance of background O\textsubscript{3} would increase were O\textsubscript{3} concentrations to decrease
with a lower level of the O\textsubscript{3} NAAQS. Third and finally, while the majority of
modeled O\textsubscript{3} exceedances have local and domestic regional emissions as their
primary cause, there can be events where O\textsubscript{3} levels approach or exceed 60-75 ppb
due to the influence of background sources. These events are relatively infrequent
and EPA has policies that could allow for the exclusion of air quality monitoring
data affected by these types of events from design value calculations.

To summarize the EPA’s key observations in the 2014 PA (EPA, 2014a) about its
modeling results stated

- First, background O\textsubscript{3} exists and can comprise a considerable fraction of total
 seasonal mean MDA\textsubscript{8} O\textsubscript{3} and W126 across the U.S. Air quality models can
 estimate the fractional contribution of background sources to total O\textsubscript{3} in an
 individual area. The largest absolute values of background (NB, NAB, USB, or
 apportionment-based USB) are modeled to occur at locations in the intermountain
 western U.S. and are maximized in the spring and early summer seasons.

- Second, the modeling indicates that U.S. anthropogenic emission sources are the
dominant contributor to the majority of modeled O\textsubscript{3} exceedances of the NAAQS.
 Higher O\textsubscript{3} days generally have smaller fractional contributions from background.
 This finding indicates that the relative importance of background O\textsubscript{3} would
 increase were O\textsubscript{3} concentrations to decrease with a lower level of the O\textsubscript{3} NAAQS.

- Third and finally, while the majority of modeled O\textsubscript{3} exceedances have local and
domestic regional emissions as their primary cause, there can be events where O\textsubscript{3}
 levels approach or exceed 60-75 ppb due to the influence of background sources.
 These events are relatively infrequent and EPA has policies that could allow for
 the exclusion of air quality monitoring data affected by these types of events from
design value calculations.
The seasonal pattern for background O$_3$ mentioned in the first bullet is supported by results summarized in the 2013 ISA (EPA, 2013). On page 2-17 of the 2014 PA (EPA, 2014a), the authors note

The ISA (US EPA 2013, section 3.4) previously established that background concentrations vary spatially and temporally and that simulated mean background concentrations are highest at high-elevation sites within the western U.S. *Background levels typically are greatest over the U.S. in the spring and early summer* (emphasis added).

As noted in Section 3.2.4 of this review, the modeling results described in the draft PA (EPA, 2019b) indicate that

- Natural and USA O$_3$ contributions peak in July, which is in the middle of the traditional O$_3$ season, while long-range intercontinental transport of international O$_3$ peaks in the spring.

- The Natural component of USB exhibits the largest magnitude difference between the West and East. In the West, the Natural component of USB increases with time from winter through the spring with a maximum value in late summer.

- The natural contribution has a single maximum in late summer in the West, whereas, in the East there is evidence of two peaks— the largest in late Spring and a second peak in early Fall.

The above appears to indicate that the modeling results summarized in the draft PA show a different seasonal pattern for when background O$_3$ is highest when compared with the previous conclusions in the 2014 PA. As noted in the draft PA, the USA contributions that drive exceedances generally peak in summer. As noted in the first bullet above, the Natural component in the model described in the draft PA also peaks in July. In this typical case, USB is overwhelmingly from Natural sources. In contrast, as pointed out in the 2014 PA (EPA, 2014a), the ISA (US EPA 2013, section 3.4) previously established that background concentrations are greatest over the US in the spring and early summer. As indicated in Section 3.2.4 of this review, the authors of the draft ISA did not resolve conflicting conclusions in the literature identifying, based on background O$_3$ modeling, when seasonal mean background O$_3$ is greatest. The draft PA does not adequately discuss these inconsistencies.

In the EPA’s AQS database there is information that can provide guidance for better understanding the distribution of hourly average background O$_3$ concentrations, as well as the seasons that exhibit the highest background O$_3$ concentrations. In the database, information from some of the O$_3$ monitoring sites illustrate the compression described in the literature about the distribution of hourly average O$_3$ concentrations, where the highest average values shift downward toward the mid-range concentrations and the lowest average concentrations shift upwards toward the mid values. In many cases for inland monitoring sites, the resulting distribution is a bell-shaped-like curve.
The EPA, in cooperation with the U.S. Forest Service, established a network of air monitoring stations (referred to as National Air Pollution Background Network (NAPBN)), which was designed to measure levels of O$_3$ in remote areas within the contiguous 48 states (Evans et al., 1983). There were 8 monitoring sites (Green Mt. NF, VT; Kisatchie NF, LA; Custer NF, MT; Chequamegon NF, WI; Mark Twain NF, MO; Croatan NF, NC; Apache NF, AZ; Ochoco NF, OR) at various National Forests, which measured O$_3$, wind speed and direction, temperature, relative humidity, and solar radiation. The network was established to provide a reasonable long-term and continuous record of O$_3$ concentrations and patterns in areas well removed from anthropogenic sources of air pollution and to make these data available to the EPA and other interested researchers.

Of the 6 NAPBN stations operational for the entire year of 1979, all but the site at Custer NF in Montana recorded hourly average O$_3$ concentrations which were in excess of 0.08 ppm. Most days with elevated O$_3$ concentration, as defined by hourly average values >0.08 ppm, occurred in the spring and early summer months. Evans et al. (1983) hypothesized that the spring events, which occurred at the 7 NAPBN stations, may have been associated with natural sources (i.e., the stratosphere). The Custer NF site was located at Fort Howes in the eastern plains of Montana, near the Wyoming border. Fort Howes is located about 32 km south of Ashland, Montana. Inspecting the hourly average concentration data for the Custer NF site (1250 m, 45° 14' 00" N, 106° 15' 00" W), Fig. 3-41 illustrates that the frequency distribution appears to approach a Gaussian-like (i.e., bell shaped) distribution. Five hourly average concentrations of 75 ppb occurred on 25 April 1979. There were 16 hourly average concentrations at 70 ppb at the site, which occurred on 17 April (4 occurrences), 19 April (2 occurrences), 25 April (5 occurrences), and 26 April (5 occurrences). The two hourly instances on 19 April occurred at 0000 and 0100 in the early morning hours local standard time (LST). The 5 hourly instances of 70 ppb on 26 April occurred during the early morning hours of 0500-0900 LST. In other words, at the Montana site all the maximum hourly average O$_3$ concentrations occurred during the springtime and appear to have been related to possible stratospheric-to-tropospheric transport to the surface (STT-S). Without more detailed information concerning the meteorological conditions during the April 1979 periods, it is not possible to definitively associate the highest hourly exposures with natural stratospheric intrusions. However, it is a reasonable explanation for the cause of the elevated hourly O$_3$ concentrations and tends to support the hypothesis stated in Evans et al. (1983).

Lefohn et al. (1998) compared the Custer NF bell-shaped-like frequency distribution (Fig. 3-41) with the distribution of hourly average concentrations for an urban influenced site in Jefferson County, KY (AQS ID 211110027). The frequency distribution of the hourly average O$_3$ concentrations at the Kentucky site appeared to have a more log-normal-like shape (Fig. 3-42). In contrast to the Custer NF site, the urban-influenced site in Kentucky showed frequent high and low hourly average concentrations. Lefohn et al. (1998) noted that the Kentucky site appeared to be influenced by NO$_x$ scavenging because of the occurrence of more frequent low hourly average concentrations.
Figure 3-41. Frequency distribution of the hourly average O$_3$ concentrations in 1979 for Custer National Forest (MT) (300870101) monitoring station. Source of data is from the EPA’s AQS database.

Figure 3-42. Frequency distribution of the hourly average O$_3$ concentrations in 1985 for an urban-influenced site in Jefferson County (KY) (211110027) monitoring station. Source of data is from the EPA’s AQS database.
Based on the comparison of the two sites, Lefohn et al. (1998) hypothesized that it might be possible that as adequate control strategies were implemented to meet the O₃ NAAQS that the distribution pattern of hourly average concentrations for inland monitoring sites might approach the distribution pattern observed at the Montana site, as well as other remote sites in the western US. The distribution of hourly average data for the same Kentucky site for 2017 is shown in Fig. 3-43. The distribution shape in 2017 is similar to the bell-shaped-like distribution observed for the Custer NF site in 1979. Although the site is still influenced by anthropogenic sources, the highest hourly average O₃ concentration has been reduced from 112 ppb (experienced in 1985) to 77 ppb (experienced in 2017). In addition, reviewing the two distribution figures for Jefferson County, Kentucky, illustrates the compression, where the highest hourly average concentrations are moving downward toward the mid-range values and the lowest concentrations are shifting upward toward the mid-range values.

![Frequency Distribution of Hourly Average O₃ Concentrations](image)

Figure 3-43. Frequency distribution of the hourly average O₃ concentrations in 2017 for an urban-influenced site in Jefferson County (KY) (21110027) monitoring station. Source of data is from the EPA’s AQS database.

Building upon the observations noted by Lefohn et al. (1998), EPA (2014a), and Simon et al. (2015), Lefohn et al. (2017) (authors: A. Lefohn, C. Malley, H. Simon, B. Wells, X. Xu, L. Zhang, and T. Wang) used data from 481 sites (276 in the EU, 196 in the US, and 9 in China) to investigate the response of 14 human health and vegetation O₃ exposure metrics to changes in hourly O₃ concentration distributions over time that resulted from changes in emissions. For the US sites used in the analysis, the following selection criteria were used: (1) sites had to collect data with a minimum of 20 years (1995-2014); sites initiating monitoring as far back as 1980 were also used; (2) sites had to collect data year-round over the entire period; and (3) sites had to not experience large data gaps in the monitoring record with more than one large data gap of up to 1 year in length. The authors reported that at a majority of EU and US sites, there was a
reduction in the frequency of both relatively high and low hourly average O₃ concentrations. The patterns of changes in hourly average O₃ concentration distributions were separated into ten distinct ‘trend type’ categories. For each site, Lefohn et al. (2017) identified what portion of the distribution of hourly average concentrations had shifted. For characterizing patterns of change for the distributions, the trend types were described as follows (yellow highlights are provided to assist the reader):

- **Trend Type 0:** No trend.

- **Trend Type 1:** Both ends of the distribution shift toward the center. (Decreasing frequency of high and low concentrations).

- **Trend Type 2:** Low end shifts upward but high end does not change. (Decreasing frequency of low concentrations; increasing frequency of middle concentrations).

- **Trend Type 3:** High end shifts downwards but no change at lower end (Decreasing frequency of high concentrations; increasing frequency of middle concentrations).

- **Trend Type 4:** Entire distribution shifts downwards (Decreasing frequency of high concentrations, increasing frequency of low concentrations).

- **Trend Type 5:** The distribution shifts from the center toward both the high and the low ends of the distribution. (Increasing frequency of high and low concentrations).

- **Trend Type 6:** The middle of the distribution shifts downward but the high end does not change. (Increasing frequency of low concentrations, decreasing frequency of middle concentrations).

- **Trend Type 7:** The middle of the distribution shifts upward but the low end does not change. (Increasing frequency of high concentrations, decreasing frequency of middle concentrations).

- **Trend Type 8:** Entire distribution shifts upwards. (Increasing frequency of high concentrations, decreasing frequency of low concentrations).

- **Trend Type X:** Complex trends that do not fall into any of the categories listed above. It is not possible to categorize portions of the O₃ distribution into “low”, “middle”, and “high” for this trend type because the directions of the trends shift more than two times across the distribution.

Trend Type 1 (highlighted in yellow above), as discussed in Lefohn et al. (2017), identified the number of sites that exhibited the compression pattern described in Lefohn et al. (1998), EPA (2014a), and Simon et al. (2015). Lefohn et al. (2017) noted that because relative shifts of low and high hourly concentrations within the Trend Type 1 distribution can influence the median concentration, Trend Type 1 sites were further grouped in their analyses into three subcategories based upon trends in the median concentration: (1) “1a” sites had increasing trends
in the median; (2) “1b” sites had no trend in the median; and (3) “1c” sites had decreasing trends in the median.

Table 3-3 (reproduced from Table 2 in Lefohn et al., 2017) below summarizes the trend type assignments for the 196 US monitoring sites. Trend Type 1 (i.e., compression of the high- and low-end concentrations within the distribution, shifting more O3 concentrations toward the center) was the most predominant trend pattern (84% of US sites (165)). The majority of the US Trend Type 1 sites were classified as Trend Type 1a (increasing median); almost 30% were classified as Trend Type 1b (no trend in the median). Sixty-one percent of the US sites analyzed by Lefohn et al. (2017) exhibited (1) compression of the high and low concentrations toward the middle of the distribution of hourly average O3 concentrations and (2) increasing trends in the median concentration. It would be anticipated that the observed increase in median concentrations would result in the average concentration also increasing for many of the same sites.

Table 3-3. Number of US sites in each trend type category from the scatter dataset by degree of urbanization. Values in parentheses indicate the percent of rural, suburban, or urban sites that fall into each category. Source: Lefohn et al. (2017).

<table>
<thead>
<tr>
<th>Trend Type</th>
<th>Rural</th>
<th>Suburban</th>
<th>Urban</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (No trend)</td>
<td>5 (6%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>5 (3%)</td>
</tr>
<tr>
<td>1a</td>
<td>31 (36%)</td>
<td>44 (76%)</td>
<td>44 (86%)</td>
<td>119 (61%)</td>
</tr>
<tr>
<td>1b</td>
<td>26 (30%)</td>
<td>11 (19%)</td>
<td>5 (10%)</td>
<td>42 (21%)</td>
</tr>
<tr>
<td>1c</td>
<td>4 (5%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>4 (2%)</td>
</tr>
<tr>
<td>2</td>
<td>4 (5%)</td>
<td>1 (2%)</td>
<td>2 (4%)</td>
<td>7 (4%)</td>
</tr>
<tr>
<td>3</td>
<td>7 (8%)</td>
<td>1 (2%)</td>
<td>0 (0%)</td>
<td>8 (4%)</td>
</tr>
<tr>
<td>4</td>
<td>9 (10%)</td>
<td>1 (2%)</td>
<td>0 (0%)</td>
<td>10 (5%)</td>
</tr>
<tr>
<td>7</td>
<td>1 (1%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (<1%)</td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
<td>58</td>
<td>51</td>
<td>196</td>
</tr>
</tbody>
</table>

The observations from Lefohn et al. (1998), EPA (2014a), Simon et al. (2015), Lefohn et al. (2017), and Lefohn et al. (2018) indicate that emission reductions have resulted in some sites experiencing a compression of the distribution of hourly average O3 concentrations and, in some cases, the compression of the high and low concentrations toward the middle results in a bell-shaped-like distribution. As emission reductions reduce the absolute value of the higher concentrations, background O3 increases its role in the percent contribution to the total O3 measured. Mathematically stated, in the limit, as US anthropogenic contributions approach zero (which is not possible socially), what remains is a distribution of hourly average O3 concentrations that represent background O3 that, in many cases for inland sites, is described as a bell-shaped-like curve.
Several examples exist today that illustrate the bell-shaped-like distribution described above. The amplitude and the width of the distribution vary from site to site. Fig. 3-44 illustrates the distribution of hourly average O₃ concentrations for 2018 for the Yellowstone National Park (WY) site. As indicated previously, the Yellowstone NP site exhibited no trend (using the nonparametric Mann-Kendall statistical test). For the year 2006, Lefohn et al. (2014) reported that background O₃ contributed a major portion of the total observed hourly average O₃ concentrations for all concentrations. Fig. 3-45 illustrates the distribution of hourly average O₃ concentrations for a site at Mesa Verde (CO) National Park. This site also exhibits the bell-shaped-like distribution pattern. The change in distribution patterns for the hourly average O₃ concentrations are not just occurring in the western US. Figs. 3-46 and 3-47 show the distribution pattern for a site located in Garrett County, Maryland for 2005 and 2018, respectively. The site is identified in the AQS database as rural forested. In 2005, the Garrett County site experienced a maximum hourly average O₃ concentration of 100 ppb. In 2018, the site experienced a maximum hourly value of 75 ppb. Fig. 3-48 illustrates the distribution pattern for a site in Monroe County, Missouri. The site setting is listed as rural in the EPA’s AQS database. In 2000, the Monroe County site experienced a maximum hourly average O₃ concentration of 91 ppb. In 2018, the site exhibited a maximum hourly average O₃ concentration of 76 ppb.

The bell-shaped-like distribution curve provides us with the ability to gain insights about the distribution of background O₃ concentrations site by site. While we cannot quantify the exact distribution of the hourly average background O₃ concentrations, we know that as the compression occurs as emission are reduced that background O₃ is encapsulated in the distribution. For example, for the Yellowstone NP (WY) site in 2018 (Fig. 3-44), the highest frequency of hourly average O₃ concentrations is in the range of 40-45 ppb. The highest hourly average O₃ concentrations at this site are most likely associated with stratospheric contributions. The Mesa Verde (CO) site in 2018 (Fig. 3-45) shows the highest frequency of hourly average O₃ concentrations in the range of 45-50 ppb. For the Garrett County (MD) site in 2018 (Fig. 3-47), the highest frequency of hourly average O₃ concentrations is 35 ppb. For the Monroe County (MO) site in 2018 (Fig. 3-48), the maximum frequency of O₃ concentrations is 30 ppb. In summary, for those sites still influenced by anthropogenic sources within the US/Canada/Mexico domain, as emissions continue to be reduced, the absolute values of the highest frequency in the distribution will continue to increase as background O₃ becomes even more dominant.
Figure 3-44. Frequency distribution of the hourly average O_3 concentrations for January-December 2018 for Yellowstone NP (WY) (560391011). Source of data is from the EPA’s AQS database.

Figure 3-45. Frequency distribution of the hourly average O_3 concentrations for January-December 2018 for Mesa Verde National Park (CO) (080830101). Source of data is from the EPA’s AQS database.
Figure 3-46. Frequency distribution of the hourly average O₃ concentrations for January-December 2005 for Garrett County (MD) (240230002). Source of data is from the EPA’s AQS database.

Figure 3-47. Frequency distribution of the hourly average O₃ concentrations for January-December 2018 for Garrett County (MD) (240230002). Source of data is from the EPA’s AQS database.
Coupled with the observation of a compression of the distribution of hourly average O₃ concentrations (with the higher values shifting downward toward the mid-values and the lower values shifting upward toward the mid concentrations) as emission reductions occur, a shift of the higher O₃ exposures from the July-August period toward the March-June months has been observed. The EPA (2014b) noted the shift of seasons in its risk assessment modeling results. In addition, EPA had concern that the O₃ monitoring season defined for each state and the District of Columbia was not adequately capturing the occurrence of daily maximum 8-h O₃ average concentrations equal to or above 0.060 ppm. In the 2015 NAAQS rulemaking (Federal Register, 2015 – page 65416), the EPA determined that the proposed lengthening of the O₃ monitoring seasons in 32 states and the District of Columbia was appropriate. The Agency indicated that ambient O₃ concentrations in these areas could approach or exceed the level of the NAAQS, more frequently and during more months of the year compared with the length of the O₃ seasons prior to 2015. The EPA concluded that it was important to monitor for O₃ during the periods when ambient concentrations could approach the level of the NAAQS to ensure that the public was informed when exposure to O₃ could reach or has reached a level of concern. The EPA completed an analysis to address whether extensions of currently required monitoring seasons were appropriate (Rice, 2014). In the EPA analysis, all available data in the AQS were used, including data from monitors that collected O₃ data year-round during 2010-2013. More than half of the O₃ monitors were voluntarily operated on a year-round basis by monitoring agencies. The Agency determined the number of days where one or more monitors experienced a daily maximum 8-h O₃ average equal to or above 0.060 ppm in the months outside each state’s current O₃ monitoring season and the pattern of those days in the out-of-season months. The EPA believed that a threshold of 0.060 ppm, taking into consideration reasonable uncertainty, served
as an appropriate indicator of ambient conditions that may be conducive to the formation of O₃ concentrations that approach or exceed the NAAQS. The Agency also considered regional consistency, particularly for those states with little available data. EPA noted that seasonal O₃ patterns varied year-to-year due primarily to highly variable meteorological conditions conducive to the formation of elevated O₃ concentrations early or late in the season in some years and not others. The EPA believed it was important that O₃ monitors operated during all periods when there was a reasonable possibility of ambient levels approaching the level of the NAAQS.

As a result of its analysis, modifications to the O₃ monitoring season involved adding earlier, as well as later months to the monitoring seasons that were used prior to 2015. Changes to the required O₃ monitoring seasons were finalized by the EPA (Federal Register, 2015 – page 65419) as follows for these states and the District of Columbia:

Colorado: Proposed addition of January, February, October, November, and December is finalized. The required season is revised to January – December.

Connecticut: Proposed addition of March is finalized, revising season to March – September.

Delaware: Proposed addition of March is finalized, revising season to March – October.

District of Columbia: Proposed addition of March is finalized, revising season to March – October.

Florida: Proposed addition of January, February, November, and December is finalized. The required season is revised to January – December.

Idaho: Proposed addition of April is finalized, revising season to April – September.

Illinois: Proposed addition of March is finalized, revising season to March – October.

Indiana: Proposed addition of March and October, revising season to March – October.

Iowa: Proposed addition of March is finalized, revising season to March – October.

Kansas: Proposed addition of March is finalized, revising season to March – October.

Maryland: Proposed addition of March is finalized, revising season to March – October.
Massachusetts: Proposed addition of March is finalized, revising season to March – September.

Michigan: Proposed addition of March and October is finalized, revising season to March – October.

Minnesota: Proposed addition of March is finalized, revising season to March – October.

Missouri: Proposed addition of March is finalized, revising season to March – October.

Montana: Proposed addition of April and May is finalized, revising season to April – September.

Nebraska: Proposed addition of March is finalized, revising season to March – October.

New Hampshire: Proposed addition of March is finalized, revising season to March – September.

New Jersey: Proposed addition of March is finalized, revising season to March – October.

New York: Proposed addition of March is finalized, revising season to March – October.

North Carolina: Proposed addition of March is finalized, revising season to March – October.

North Dakota: Proposed addition of March and April is finalized, revising season to March – September.

Ohio: Proposed addition of March is finalized, revising season to March – October.

Pennsylvania: Proposed addition of March is finalized, revising season to March – October.

Rhode Island: Proposed addition of March is finalized, revising season to March – September.

South Carolina: Proposed addition of March is finalized, revising season to March – October.
South Dakota: Proposed addition of March, April, May, and October is finalized, revising season to March – October.

Texas (Northern AQCR 022, 210, 211, 212, 215, 217, 218): Proposed addition of November is finalized, revising season to March – November.

Utah: Proposed addition of January, February, March, April, October, November, and December is finalized. The required season is revised to January – December.

Virginia: Proposed addition of March is finalized, revising season to March – October.

West Virginia: Proposed addition of March is finalized, revising season to March – October.

Wisconsin: Proposed addition of March and April 1 – 15 is finalized, revising season to March – October 15.

There is strong evidence supported in the literature that background O$_3$ across the US is highest at many sites across the US during the springtime (including into the month of June) and is an important contributor at many high-elevation sites throughout the year. As noted earlier (Section 3.1.2), actual O$_3$ monitoring data show that the highest O$_3$ exposures for the Park sites occur across the US during the springtime and into early summer (i.e., March-June). As indicated earlier, the EPA in its 2014 PA (EPA, 2014c) (Welfare Appendix, page 7A-12) provided the highest 3-month W126 values and the timeframe corresponding to those W126 exposures for the Parks with O$_3$ monitors for the period 2006-2010. Using hourly average O$_3$ data from 57 National Parks, Table 7A-2 shows that several of the O$_3$ monitors in the Parks experienced their highest W126 exposures during the spring months and early summer.

One site not included in the table summarizing the analysis of O$_3$ monitoring data for the Parks in the EPA’s 2014 PA (EPA, 2014c) (Welfare Appendix, page 7A-12) was the Look Rock site (TN) (470090101) in the Great Smoky Mountain NP. Table 3-4 below illustrates the top-10 daily maximum 8-h average concentrations and the date/time associated with each occurrence. Beginning in 1989 and continuing to the present, the Park began monitoring at Look Rock (823 m), located on the Foothills Parkway on the TN side of the Park. As mentioned earlier, the Park has historically been subject to elevated O$_3$ levels (Neufeld et al., 2019). Neufeld et al. (2019) analyzed O$_3$ trends from 1989 to 2016 for six monitoring sites in and adjacent to GRSM and ranging in elevation from 564m to 2030m. Data from the Look Rock O$_3$ monitor were used in their analyses. The highest hourly average concentration in the Park was recorded at the Look Rock site at 1600h on August 25, 1998. Note that in the early years (e.g., 1988), the top-10 8-h average concentrations occurred during the summer months. In 2018, all the top-10 8-h values occurred during the March-June period. The Look Rock (TN) site exhibited a shift of its top-10 8-h values from the summer to the March-June period.
Table 3-4. Top-10 daily maximum 8-h average concentrations and the date/time associated with each occurrence for Look Rock (TN) (470090101) O₃ monitoring site in Great Smoky Mountains National Park. All available data over the entire period of record were included in this analysis independent of the EPA-defined O₃ season.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>0.122</td>
<td>8/25/1998 14:00</td>
<td>0.110</td>
<td>7/23/1999 18:00</td>
<td>0.092</td>
<td>4/19/2005 14:00</td>
</tr>
<tr>
<td>2nd</td>
<td>0.116</td>
<td>9/12/1998 16:00</td>
<td>0.110</td>
<td>8/18/1999 10:00</td>
<td>0.089</td>
<td>9/12/2005 15:00</td>
</tr>
<tr>
<td>3rd</td>
<td>0.112</td>
<td>9/11/1998 14:00</td>
<td>0.107</td>
<td>9/4/1999 12:00</td>
<td>0.086</td>
<td>4/17/2005 16:00</td>
</tr>
<tr>
<td>4th</td>
<td>0.110</td>
<td>9/2/1998 14:00</td>
<td>0.106</td>
<td>8/17/1999 19:00</td>
<td>0.086</td>
<td>7/25/2005 14:00</td>
</tr>
<tr>
<td>5th</td>
<td>0.104</td>
<td>8/24/1998 20:00</td>
<td>0.105</td>
<td>9/1/1999 12:00</td>
<td>0.085</td>
<td>4/18/2005 12:00</td>
</tr>
<tr>
<td>6th</td>
<td>0.103</td>
<td>9/4/1998 13:00</td>
<td>0.104</td>
<td>8/4/1999 17:00</td>
<td>0.085</td>
<td>6/22/2005 14:00</td>
</tr>
<tr>
<td>7th</td>
<td>0.102</td>
<td>9/5/1998 16:00</td>
<td>0.104</td>
<td>8/6/1999 13:00</td>
<td>0.085</td>
<td>6/25/2005 12:00</td>
</tr>
<tr>
<td>8th</td>
<td>0.099</td>
<td>9/17/1998 13:00</td>
<td>0.102</td>
<td>7/26/1999 13:00</td>
<td>0.084</td>
<td>5/18/2005 17:00</td>
</tr>
<tr>
<td>9th</td>
<td>0.098</td>
<td>8/22/1998 15:00</td>
<td>0.102</td>
<td>9/2/1999 15:00</td>
<td>0.084</td>
<td>9/9/2005 13:00</td>
</tr>
<tr>
<td>10th</td>
<td>0.098</td>
<td>8/29/1998 12:00</td>
<td>0.101</td>
<td>9/3/1999 14:00</td>
<td>0.084</td>
<td>9/20/2005 15:00</td>
</tr>
</tbody>
</table>

Source: US EPA AQS data run.

Table 3-5. Top-10 daily maximum 8-h average concentrations and the date/time associated with each occurrence for Carter County (KY) (210430500) O₃ monitoring site. All available data over the entire period of record were included in this analysis independent of the EPA-defined O₃ season.

<table>
<thead>
<tr>
<th>Top-10</th>
<th>1998</th>
<th>2002</th>
<th>2008</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>0.104</td>
<td>9/13/1998 11:00</td>
<td>0.094</td>
<td>8/3/2002 10:00</td>
</tr>
<tr>
<td>2nd</td>
<td>0.100</td>
<td>8/22/1998 11:00</td>
<td>0.093</td>
<td>9/9/2002 10:00</td>
</tr>
<tr>
<td>3rd</td>
<td>0.097</td>
<td>9/12/1998 11:00</td>
<td>0.088</td>
<td>6/22/2002 11:00</td>
</tr>
<tr>
<td>4th</td>
<td>0.096</td>
<td>8/23/1998 10:00</td>
<td>0.086</td>
<td>9/10/2002 10:00</td>
</tr>
<tr>
<td>5th</td>
<td>0.090</td>
<td>9/6/1998 11:00</td>
<td>0.083</td>
<td>7/5/2002 10:00</td>
</tr>
<tr>
<td>6th</td>
<td>0.090</td>
<td>9/7/1998 11:00</td>
<td>0.083</td>
<td>9/8/2002 10:00</td>
</tr>
<tr>
<td>7th</td>
<td>0.089</td>
<td>8/7/1998 10:00</td>
<td>0.080</td>
<td>8/9/2002 11:00</td>
</tr>
<tr>
<td>8th</td>
<td>0.088</td>
<td>8/20/1998 11:00</td>
<td>0.080</td>
<td>9/7/2002 10:00</td>
</tr>
<tr>
<td>9th</td>
<td>0.087</td>
<td>9/14/1998 10:00</td>
<td>0.079</td>
<td>5/24/2002 11:00</td>
</tr>
<tr>
<td>10th</td>
<td>0.086</td>
<td>5/15/1998 11:00</td>
<td>0.079</td>
<td>8/13/2002 10:00</td>
</tr>
</tbody>
</table>

Source: US EPA AQS data run.
In addition to the Tennessee example, Blanchard et al. (2019) noted that the highest peak 8-h O$_3$ maxima typically occurred in summer throughout New York state prior to about 2010. Annual maxima now occur during spring at rural locations but continue to persist in summer in the New York City metropolitan area. Similarly, in the southeastern US, Blanchard and Hidy (2019) reported that the highest peak daily 8-h average O$_3$ concentrations tended to occur in summer, but the authors provide some evidence for a recent shift in the frequency of maxima to spring in some locations.

There are many sites within the EPA’s AQS database that show similar shifting monthly patterns for the top-10 8-h values from the summer to the March-June period. For example, a site in Carter County, KY (210430500) illustrates the shifting pattern from the summer to the March-April months for the 1998-2018 period. The site is listed in the AQS database as rural residential. Table 3-5 (please see the table above) illustrates the top-10 daily maximum 8-h average concentrations and the date/time associated with each occurrence. In addition, there are many other sites in the AQS Database that illustrate their highest 8-h daily maximum concentrations during the spring. To quantify the number of O$_3$ sites in the US that exhibit their highest daily maximum 8-h values during the March-June period, I would suggest that the EPA might wish to perform analyses that clarify the shifting season phenomenon and include this analysis in the draft PA. The EPA performed an analysis in 2014, which addressed whether extensions of currently required monitoring seasons were appropriate (Rice, 2014). Performing an additional analysis and providing the results in the PA would add clarity to the situation and provide an update to the Agency’s 2014 analysis.

In summary, in this section we identified several sites with bell-shaped-like distribution curves of the hourly average O$_3$ concentrations. We saw for the Yellowstone NP (WY) site, a location that does not exhibit statistically significant trends for the MDA8 metric using the Mann-Kendell nonparametric test, that the most frequent hourly average O$_3$ concentrations were in the 40-45 ppb range. Fig. 3-49 illustrates the average relative contributions of current hourly background (blue) and anthropogenic O$_3$ (red) in 2006 (Lefohn et al., 2014). The black line shows the distribution pattern overlaid onto the figure. Note that the distribution pattern observed (black line) in 2006 in Fig. 3-49 resembles the distribution pattern illustrated in Fig. 3-44 for 2018 and there appears to be very little influence of anthropogenic sources. Fig. 3-49 described by Lefohn et al. (2014) illustrates that the percent background O$_3$ concentrations in the 40-45 ppb compared to total observed O$_3$ values consist mostly of estimated background O$_3$ concentrations. For those sites that are more influenced by anthropogenic sources than the Yellowstone NP site, as emission reductions occur, a compression of the distribution of hourly average O$_3$ concentrations (with the higher values shifting downward toward the mid-values and the lower values shifting upward toward the mid concentrations) occurs. As mentioned earlier in this section, as emission reductions continue to decrease the absolute value of the higher concentrations, background O$_3$ increases its role as indicated by the percent contribution to the total O$_3$ measured. As US anthropogenic contributions approach zero (which is not possible socially), what will remain is a distribution of hourly average O$_3$ concentrations that represent background O$_3$ that in many cases for inland sites is described as the bell-shaped-like curve. While we cannot say at what point the bell-shaped-like curve will no longer change except for meteorological variability, if the curve remains stable from year-to-year except for minor variability, then we have the ability to gain insight about the distribution of background O$_3$.
Figure 3-49. Average relative contributions of hourly background (blue) and anthropogenic O$_3$ (red) for Yellowstone NP (WY) (AQS ID 560391011) in 2006. The black line indicates the distribution of the hourly average O$_3$ concentrations. (Source: Lefohn et al., 2014).

Besides discussing the compression of the hourly average O$_3$ concentrations, we discussed a pattern where many sites within the EPA’s AQS database show shifting from the summer months to the March-June period for the higher daily maximum 8-h values. This pattern is important. As will be discussed in the next section, the seasonal change pattern provides us with the ability to overlay this information with the predictions indicated by background O$_3$ modeling.

3.2.9 Observed Ozone Exposure Patterns and Model Performance

The USB modeling results described in the draft PA (EPA, 2019b) indicate the following seasonal patterns:

- Natural and USA O$_3$ contributions peak in July, which is in the middle of the traditional O$_3$ season, while long-range intercontinental transport of international O$_3$ peaks in the spring. (page 2-58).

- The natural contribution has a single maximum in late summer in the West, whereas, in the East there is evidence of two peaks— the largest in late Spring and a second peak in early Fall. (page 2-44).
As indicated in Section 3.2.4 and the previous section, the USB modeling results summarized in the first bullet above as indicated in the draft PA show a different seasonal pattern for when background O\textsubscript{3} is highest than the pattern reported in previous published results. The bullets indicate that the Natural component of the EPA model (which is the largest contributor to background O\textsubscript{3}) is predicted to occur in the West during the middle of the summer (i.e., July). The previous conclusion in the 2014 PA (EPA, 2014a) and the 2013 ISA (EPA, 2013, in section 3.4) was that background O\textsubscript{3} was greatest over the US during the spring and early summer (i.e., June).

Bias adjustment to estimated background O\textsubscript{3} estimates has been described in the literature. Dolwick et al. (2015) and Lefohn et al. (2014) used bias-adjusted estimates for USB\textsubscript{AB} and EIB, respectively. Lefohn et al. (2014) concluded that, based on the tendency for their model to underestimate STT processes, the upward adjusted values of the hourly EIB concentration range were preferable to using an average or median value of the hourly range, especially during the spring at high-elevation sites. In their analyses, Lefohn et al. (2014) noted that model performance at low-elevation sites tended toward larger under prediction biases in cool months (i.e., November-April) and larger over prediction biases in warm months (June-October), particularly for sites in the southern and eastern US. The authors attributed site-specific monthly under and over predictions to their Global background O\textsubscript{3} (GBO\textsubscript{3}) or anthropogenic O\textsubscript{3} modeling components. Global background O\textsubscript{3} (GBO\textsubscript{3}) was defined as the sum of the global tropospheric and stratospheric components. For almost all high-elevation sites in their analyses, the model under predicted in the spring months when the above-median MDA8 GBO\textsubscript{3} coincided with diagnosed STT-S events as per the stratospheric trajectory analyses performed by Dr. Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich in Switzerland. Table 3-6 (Table 4 from Lefohn et al., 2014), summarizes the months when STT-S events coincided with months of highest MDA8 GBO\textsubscript{3} and the model tended to be under (u) or over (o) predicted. As indicated above, for almost all high-elevation sites, the model under predicted in the spring when the above-median MDA8 GBO\textsubscript{3} coincided with diagnosed STT-S events. Given the relatively small spring anthropogenic contributions at these sites, Lefohn et al. (2014) felt it was likely that the underestimates were associated with GBO\textsubscript{3}. For some urban sites (i.e., Boston, Dallas, Detroit, New York, and Sacramento), the model also under predicted during the spring when higher GBO\textsubscript{3} coincided with diagnosed STT-S events; for others (i.e., Atlanta, Baltimore, Chicago, Cleveland, Georgia Station, Houston, Philadelphia, St. Louis, and Washington DC), spring over predictions occurred when higher GBO\textsubscript{3} coincided with STT-S events. For urban sites with higher spring anthropogenic influences, it was more likely that over predictions were associated with anthropogenic O\textsubscript{3}.

The important role that the stratosphere played in episodic (i.e., short-term, high concentration events), as well as enhancements (subtle increases in O\textsubscript{3} concentration), to surface O\textsubscript{3} values was noted in Lefohn et al. (2012). The authors quantified the frequency of stratosphere-troposphere exchange (STE) events that result in O\textsubscript{3} concentration enhancements (i.e., hourly average concentrations \(\geq 50\) ppb) observed at 39 high- and low-elevation monitoring sites in the US during the years 2007-2009. The authors employed a forward trajectory-based approach to address the relationship between stratospheric intrusions and enhancements in hourly average O\textsubscript{3} concentrations. The authors results indicated that STT down to the surface (STT-S) frequently.
Table 3-6. Months when STT-S events coincided with months of highest MDA8 GBO\textsubscript{3} and the model tended to be under (u) or over (o) predicted. Source: Reproduced from Table 4 in Lefohn et al. (2014).

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Elevation</td>
<td></td>
</tr>
<tr>
<td>Yosemite NP, CA</td>
<td>o</td>
<td>o</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denver, CO</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gothic, CO</td>
<td>u</td>
<td>o</td>
<td>u</td>
<td>u</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinedale, WY</td>
<td></td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellowstone NP, WY</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shenandoah NP, VA</td>
<td></td>
<td>o</td>
<td>o</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Elevation</td>
<td></td>
</tr>
<tr>
<td>Atlanta, GA</td>
<td></td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Boston, MA</td>
<td></td>
<td>u</td>
</tr>
<tr>
<td>Chicago, IL</td>
<td></td>
</tr>
<tr>
<td>Cleveland, OH</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Dallas, TX</td>
<td></td>
<td>u</td>
</tr>
<tr>
<td>Detroit, MI</td>
<td></td>
</tr>
<tr>
<td>Georgia Station, GA</td>
<td></td>
<td>u</td>
</tr>
<tr>
<td>Houston, TX</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Los Angeles, CA</td>
<td></td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>New York, NY</td>
<td></td>
<td>u</td>
</tr>
<tr>
<td>Philadelphia, PA</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Sacramento, CA</td>
<td></td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>Seattle, WA</td>
<td></td>
<td>u</td>
</tr>
<tr>
<td>St. Louis, MO</td>
<td></td>
<td>u</td>
<td>o</td>
</tr>
<tr>
<td>Voyageurs NP, MN</td>
<td></td>
</tr>
<tr>
<td>Washington DC</td>
<td></td>
<td>o</td>
</tr>
</tbody>
</table>
contributed to enhanced surface O$_3$ hourly averaged concentrations at sites across the US, with substantial year-to-year variability. The O$_3$ concentrations associated with the STT-S events appeared to be large enough to enhance the measured O$_3$ concentrations during specific months of the year. Months with a statistically significant coincidence between enhanced O$_3$ concentrations and STT-S occurred most frequently at the high-elevation sites in the Intermountain West, as well as at the high-elevation sites in the West and East. These sites exhibited a preference for coincidences during the springtime and in some cases, the summer, fall, and late winter. Besides the high-elevation monitoring sites, low-elevation monitoring sites across the entire US experienced enhanced O$_3$ concentrations coincident with STT-S events.

Tables 3-7 – 3-12 (Supplemental Tables S-1 – S-6 in Lefohn et al., 2012) provide a detailed description of the number of days in which the daily maximum hourly average O$_3$ concentration was ≥ 50 ppb and coincident with a direct STT-S event for each of the statistically significant STT-S months. The tables provide an indication of the variability of the coincidences at each site across years.

On page 2-59 of the draft PA, the authors note

For this analysis, we did not attempt to quantify the contributions from individual Natural sources (e.g., lightning, soil, fires, stratosphere) or to address exceptional events beyond basic screening to remove very large fire plumes.

On page 2-37 of the draft PA, the authors note

Near the tropopause, there is a low bias in the model that is most pronounced in the spring. The low bias at the tropopause likely suggests an underestimate of stratospheric exchange. Mean bias drops to below 20% in the middle troposphere (600-300 hPa). The low-bias in the free troposphere may stem from underestimation of spring time stratospheric contribution in some regions.

On page 2-38 of the draft PA, the authors also note

Dolwick et al. (2015) showed that multi-model estimates converged when applying bias correction, indicating that differences in USB estimates are correlated with model performance. No bias correction has been applied here, so in a limited manner bias can help set expectations for bias. Based on hemispheric model evaluation, the stratospheric component in spring is likely underestimated leading to a USB low bias in spring.

Not applying a bias correction to the estimated USB concentrations when observed biases in the model were observed may explain why the seasonal patterns exhibited in the model described in the draft PA do not match the patterns observed when one reviews ambient data (see previous section). As noted above, the EPA model described in the draft PA showed biases in the springtime. As noted in Tables 3-7 – 3-12 (Supplemental Tables S-1 – S-6 in Lefohn et al., 2012), the spring months are when the stratosphere plays an important role at both low- and high-elevation O$_3$ surface sites across the US. Enhanced, as well as episodic, contributions occur from the stratosphere during this time period to surface O$_3$ levels. The USB low bias in spring
may explain some of the inconsistency observed in the seasonal patterns for USB observed in the EPA modeling results described in the draft PA.
Table 3-7. Months in which highest-elevation (> 2.3 km) monitoring sites in the Intermountain West exhibited a statistically significant coincidence value and there was a coincidence between the number of days with daily maximum hourly average O$_3$ concentrations ≥ 50 ppb and STT-S >0. The number of days during the specific month when the daily maximum hourly average concentration was ≥ 50 ppb and the STT-S was > 0 is in parenthesis (). Source: Table S-1 from Lefohn et al. (2012).

<table>
<thead>
<tr>
<th>Site</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellowstone NP, WY</td>
<td>March 2007 (21), April 2007 (27), May 2007 (27),</td>
</tr>
<tr>
<td></td>
<td>June 2007 (21), August 2007 (20), March 2008* (23),</td>
</tr>
<tr>
<td></td>
<td>April 2008 (29), May 2008 (22), June 2008 (19),</td>
</tr>
<tr>
<td></td>
<td>July 2008 (22), March 2009 (22), April 2009 (23),</td>
</tr>
<tr>
<td></td>
<td>May 2009 (28), June 2009 (14)</td>
</tr>
<tr>
<td>Pinedale, WY</td>
<td>March 2007 (22), April 2007 (28), May 2007 (25),</td>
</tr>
<tr>
<td></td>
<td>June 2007 (24), August 2007 (26), September 2007 (24),</td>
</tr>
<tr>
<td></td>
<td>February 2008 (22), March 2008 (29), April 2008 (20),</td>
</tr>
<tr>
<td></td>
<td>May 2008 (20), June 2008* (17), July 2008 (25),</td>
</tr>
<tr>
<td></td>
<td>August 2008* (15), September 2008* (13), March 2009 (30),</td>
</tr>
<tr>
<td></td>
<td>April 2009 (26), May 2009 (23), July 2009 (22)</td>
</tr>
<tr>
<td>Centennial, WY</td>
<td>April 2007 (25), May 2007 (20), June 2007 (25),</td>
</tr>
<tr>
<td></td>
<td>August 2007 (20), September 2007 (24), February 2008 (21),</td>
</tr>
<tr>
<td></td>
<td>March 2008 (30), April 2008 (30), May 2008 (28),</td>
</tr>
<tr>
<td></td>
<td>June 2008 (25), July 2008 (24), August 2008 (25),</td>
</tr>
<tr>
<td></td>
<td>September 2008 (20), March 2009 (29), April 2009 (27),</td>
</tr>
<tr>
<td></td>
<td>May 2009* (9), June 2009* (17), July 2009 (19),</td>
</tr>
<tr>
<td></td>
<td>August 2009 (23), September 2009 (24)</td>
</tr>
<tr>
<td>Gothic, CO</td>
<td>March 2007 (24), April 2007 (28), May 2007 (27),</td>
</tr>
<tr>
<td></td>
<td>June 2007 (21), September 2007 (21), February 2008 (22),</td>
</tr>
<tr>
<td></td>
<td>March 2008 (21), April 2008* (11), May 2008* (22),</td>
</tr>
<tr>
<td></td>
<td>July 2008 (24), February 2009 (21), March 2009 (28),</td>
</tr>
<tr>
<td></td>
<td>April 2009 (30), May 2009 (24), June 2009 (20),</td>
</tr>
<tr>
<td></td>
<td>July 2009 (21), August 2009 (21)</td>
</tr>
<tr>
<td>Rocky Mountain NP, CO</td>
<td>March 2007 (23), April 2007 (23), May 2007 (23),</td>
</tr>
<tr>
<td></td>
<td>June 2007 (20), September 2007 (25), February 2008 (20),</td>
</tr>
<tr>
<td></td>
<td>March 2008 (29), April 2008 (30), May 2008 (26),</td>
</tr>
<tr>
<td></td>
<td>June 2008 (27), July 2008 (25), August 2008 (20),</td>
</tr>
<tr>
<td></td>
<td>September 2008 (19), March 2009 (29), April 2009 (25),</td>
</tr>
<tr>
<td></td>
<td>May 2009 (24), June 2009 (23), July 2009 (19),</td>
</tr>
<tr>
<td></td>
<td>August 2009 (20), September 2009 (21), November 2009 (18),</td>
</tr>
<tr>
<td></td>
<td>December 2009 (23)</td>
</tr>
</tbody>
</table>

*Data capture less than 90% but statistically significant coincidences existed.
Table 3-8. Months in which higher-elevation (1.5 – 2.2 km) monitoring sites in the Intermountain West exhibited a statistically significant coincidence value and there was a coincidence between the number of days with daily maximum hourly average O_3 concentrations ≥ 50 ppb and STT-S >0. The number of days during the specific month when the daily maximum hourly average concentration was ≥ 50 ppb and the STT-S was >0 is in parenthesis (). Source: Table S-2 from Lefohn et al. (2012).

<table>
<thead>
<tr>
<th>Site</th>
<th>Months</th>
</tr>
</thead>
</table>

*Data capture less than 90% but statistically significant coincidences existed.
Table 3-9. Months in which high-elevation (> 1.3 km) monitoring sites in the West and East exhibited a statistically significant coincidence value and there was a coincidence between the number of days with daily maximum hourly average \(O_3\) concentrations \(\geq 50\) ppb and STT-S >0. The number of days during the specific month when the daily maximum hourly average concentration was \(\geq 50\) ppb and the STT-S was >0 is in parenthesis (). Source: Table S-3 from Lefohn et al. (2012).

<table>
<thead>
<tr>
<th>Site</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lassen Volcanic NP, CA</td>
<td>March 2007 (21), April 2007 (23), May 2007 (29), June 2007 (21),</td>
</tr>
<tr>
<td></td>
<td>July 2007 (19), August 2007 (24), September 2007 (22), March 2008</td>
</tr>
<tr>
<td></td>
<td>(29), April 2008 (29), May 2008 (20), June 2008 (26), July 2008 (30),</td>
</tr>
<tr>
<td></td>
<td>August 2008 (25), September 2008 (24), March 2009 (24), April 2009</td>
</tr>
<tr>
<td></td>
<td>(24), May 2009 (23), July 2009 (22), August 2009 (21), September 2009 (19)</td>
</tr>
<tr>
<td>Yosemite NP, CA (Turtleback Dome)</td>
<td>April 2007 (27), May 2007 (29), June 2007 (23), August 2007 (22),</td>
</tr>
<tr>
<td></td>
<td>September 2007 (25), October 2007 (20), March 2008 (27), April 2008</td>
</tr>
<tr>
<td></td>
<td>(29), May 2008 (26), June 2008 (24), July 2008* (22), August 2008*</td>
</tr>
<tr>
<td></td>
<td>(17), September 2008 (26), October 2008 (23), March 2009 (24), April</td>
</tr>
<tr>
<td></td>
<td>2009 (27), May 2009 (24), June 2009 (16), July 2009 (28), August 2009</td>
</tr>
<tr>
<td></td>
<td>(22), September 2009 (24)</td>
</tr>
<tr>
<td>Crestline, CA</td>
<td>March 2007 (26), April 2007 (24), May 2007 (26), October 2007 (20),</td>
</tr>
<tr>
<td></td>
<td>March 2008 (21), April 2008 (28), May 2008 (29), June 2008 (21),</td>
</tr>
<tr>
<td></td>
<td>September 2008 (24), October 28 (22), March 2009 (20), April 2009</td>
</tr>
<tr>
<td></td>
<td>(27), May 2009 (24), June 2009 (17), September 2009 (19)</td>
</tr>
<tr>
<td>Mount Washington, NH</td>
<td>March 2007 (17), May 2007 (20), September 2007 (15), March 2008</td>
</tr>
<tr>
<td></td>
<td>(19), April 2008 (23), May 2008 (23), June 2008 (16), March 2009</td>
</tr>
<tr>
<td></td>
<td>(25), April 2009 (21), May 2009 (24), September 2009 (15), November</td>
</tr>
<tr>
<td></td>
<td>* 2009 (10)</td>
</tr>
<tr>
<td>Whiteface Mountain, NY</td>
<td>March 2007 (17), May 2007 (21), March 2008 (20), April 2008 (22),</td>
</tr>
<tr>
<td></td>
<td>May 2008 (20), April 2009 (16), May 2009 (22), September 2009 (9)</td>
</tr>
</tbody>
</table>

*Data capture less than 90% but statistically significant coincidences existed.
Table 3-10. Months in which low-elevation (< 1.3 km) monitoring sites in the West and Intermountain West exhibited a statistically significant coincidence value and there was a coincidence between the number of days with daily maximum hourly average O₃ concentrations ≥ 50 ppb and STT-S >0. The number of days during the specific month when the daily maximum hourly average concentration was ≥ 50 ppb and the STT-S was > 0 is in parenthesis (). Source: Table S-4 from Lefohn et al. (2012).

<table>
<thead>
<tr>
<th>Site</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeka Peak, WA</td>
<td>May 2007 (7), August 2007 (1), June 2009 (3), September 2009 (1)</td>
</tr>
<tr>
<td>King County, WA</td>
<td>January 2007 (1), August 2008 (1), July 2009 (1)</td>
</tr>
<tr>
<td>Mount Rainier NP, WA</td>
<td>August 2008 (4), July 2009 (9)</td>
</tr>
<tr>
<td>Trinidad Head, CA</td>
<td>June 2008 (2)</td>
</tr>
<tr>
<td>El Dorado County, CA</td>
<td>May 2007* (11), September 2007 (18), March 2008 (23), April 2008 (28),</td>
</tr>
<tr>
<td></td>
<td>May 2008 (23), June 2008 (21), October (15), April 2009 (22), June 2009 (17), September 2009 (20)</td>
</tr>
<tr>
<td>Glacier NP, MT</td>
<td>April 2008 (18), April 2009 (18)</td>
</tr>
<tr>
<td>Big Bend NP, TX</td>
<td>February 2007 (13), March 2007 (25), April 2007 (22), September 2007 (6), October 2007 (11), March 2008 (25), April 2008 (28), August 2008 (5), September 2008 (6), February 2009 (17), March 2009 (16), April 2009 (28), June 2009 (7)</td>
</tr>
</tbody>
</table>

*Data capture less than 90% but statistically significant coincidences existed.
Table 3-11. Months in which low-elevation (< 1.3 km) monitoring sites in the Midwest exhibited a statistically significant coincidence value and there was a coincidence between the number of days with daily maximum hourly average O₃ concentrations ≥ 50 ppb and STT-S >0. The number of days during the specific month when the daily maximum hourly average concentration was ≥ 50 ppb and the STT-S was > 0 is in parenthesis (). Source: Table S-5 from Lefohn et al. (2012).

<table>
<thead>
<tr>
<th>Site</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theodore Roosevelt NP, ND</td>
<td>April 2007 (16), May 2007 (15), April 2008 (22), May 2008 (20), May 2009 (17)</td>
</tr>
<tr>
<td>Voyageurs NP, MN</td>
<td>April 2007 (14), September 2007 (4), April 2008 (18), April 2009 (19), May 2009 (18)</td>
</tr>
<tr>
<td>Ann Arbor, MI</td>
<td>April 2007 (15), May 2007 (21), June 2007 (17), April 2008 (20), May 2008 (22), July 2008 (16), May 2009 (23), June 2009 (18)</td>
</tr>
<tr>
<td>Cook County, IL</td>
<td>June 2007 (14), April 2008 (15), June 2008 (15), April 2009 (14), May 2009 (17), July 2009 (13)</td>
</tr>
<tr>
<td>Alhambra, IL</td>
<td>April 2007 (22), June 2007 (16), July 2007 (17), April 2008 (19), May 2008 (22), June 2008 (17), April 2009 (14), May 2009 (16), September 2009 (8)</td>
</tr>
<tr>
<td>Stockton, IL</td>
<td>August 2009* (1)</td>
</tr>
</tbody>
</table>

*Data capture less than 90% but statistically significant coincidences existed.
Table 3-12. Months in which low-elevation (< 1.3 km) monitoring sites in the East exhibited a statistically significant coincidence value and there was a coincidence between the number of days with daily maximum hourly average O$_3$ concentrations ≥ 50 ppb and STT-S >0. The number of days during the specific month when the daily maximum hourly average concentration was ≥ 50 ppb and the STT-S was > 0 is in parenthesis (). Source: Table S-6 from Lefohn et al. (2012).

<table>
<thead>
<tr>
<th>Site</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georgia Station, GA</td>
<td>March 2007 (22), April 2007 (23), May 2007 (20), June 2007 (19), July 2007 (8), September 2007 (13), March 2008 (23), April 2008 (20), May 2008 (23), July 2008 (15), March 2009 (14), April 2009 (18), May 2009 (6)</td>
</tr>
<tr>
<td>Rockdale, GA</td>
<td>March 2007 (21), April 2007 (23), May 2007* (17), March 2008 (21), April 2008 (18), May 2008 (25), September 2008 (8), May 2009 (8), July 2009 (14)</td>
</tr>
<tr>
<td>Cuyahoga County, OH</td>
<td>April 2008 (19), May 2008 (20), May 2009 (16), July 2009 (15)</td>
</tr>
<tr>
<td>Blackwater NWR, MD</td>
<td>September 2008 (10), May 2009 (10)</td>
</tr>
<tr>
<td>Abington, CT</td>
<td>July 2008 (14), April 2009 (14)</td>
</tr>
<tr>
<td>Fairfield, CT</td>
<td>April 2009 (15), June 2009 (11)</td>
</tr>
<tr>
<td>Chittenden County, VT</td>
<td>April 2008 (19), May 2008 (17), April 2009 (18), May 2009 (17)</td>
</tr>
</tbody>
</table>

*Data capture less than 90% but statistically significant coincidences existed.
Jaffe et al. (2018) discussed a site in Colorado, where simulations and contributions were compared for a monitor at Chatfield (AQS 08-035-0004) for May-September 2011. The authors describe the site as a regulatory relevant suburban monitor southwest of Denver, Colorado. Figure 6 in Jaffe et al. (2018) showed the observed and modeled daily MDA8 values using results from an EPA model. Monthly averaged biases at the Chatfield monitor were marginally negative in the EPA simulations. The authors noted that Figure 6 in Jaffe et al. (2018) suggested four distinct segments of performance and simulated contributions at the Chatfield monitor that were related to contributions from noncontrollable O3 sources. As pointed out by the authors, the simulations started in a USB O3 dominated regime (May 1 to June 7), then went through a transition period (June 8 to July 15), and then ended with two periods dominated by local contributions (July 16 to August 22 and August 23 to September 29). During the USB O3 dominated period, the EPA model experienced a mean bias of -2.1. During the transition period, the EPA simulations performed poorly and experienced a mean bias of -3.6. During the locally dominated period of July 16 to August 22, the simulation performed well with a mean bias of -0.9. During the locally dominated period of August 23 to September 29, the mean bias was -3.3. Jaffe et al. (2018) noted that the simulations performed better during periods of sustained contribution (USB O3 or local). The authors noted that simulations performed even better when USB O3 and local contribution were not anti-correlated, and simulations performed best when local contributions were dominant. The model performed well for average biases, but model correlation with observations was better when local contributions were dominant and when anti-correlation between local and USB O3 contributions was weak.

Fig. 3-50 illustrates for the Chatfield site in 2011 the comparison of observed daily O3 MDA8 concentrations and the STT-S counts (estimated for a site in the Denver area for 2011). The USB O3 dominated regime identified in Jaffe et al. (2018) (May 1 to June 7) was a period of large numbers of STT-S counts, the transition period (June 8 to July 15) exhibited a declining number of STT-S counts, the period July 16 to August 22 experienced fewer STT-S counts, and the period August 23 to September 29 exhibited an increasing pattern of STT-S counts. The period from early July to early September was the time when the lowest number of STT-S counts occurred over the 2011 period. Based on the mean monthly bias observed by Jaffe et al. (2018) for the high-elevation site at Chatfield, the periods associated with greatest biases in the EPA model appeared to be associated with the period when the contribution of STT-S was most important. The lowest mean bias was -0.9 which occurred during July 16 to August 22, a period when the STT-S counts were the lowest.

The draft PA (page 2-38) indicates, based on hemispheric model evaluation, that the stratospheric component in spring was likely underestimated leading to a USB low bias in spring. The authors noted that no bias correction had been applied to the EPA model used in the draft PA. The draft PA observed that the Natural contribution has two peaks in the East. The largest occurred in late Spring and the second peak occurred in early Fall (EPA, 2019b, page 2-44). However, the pattern described in the draft PA for the East, was observed in both the East and West by Lefohn et al. (2012). The authors noted that for the 39 sites analyzed in their study, many of the sites during the spring, fall, and winter months, experienced higher GBO3, which was associated with more frequent stratosphere-to-troposphere transport to the surface (STT-S) enhancements according to their independent three-dimensional trajectories based on global meteorological analyses. Patterns of higher spring (Emissions Influenced Background (EIB) O3
were followed by lower values during the summer, due to heightened chemical interaction with anthropogenic sources, which are then followed by rising EIB O\(_3\) during the fall and winter months. For some high-elevation western US sites, this seasonal pattern was less discernible due to relatively small anthropogenic contributions and the high EIB O\(_3\) estimated throughout the year. EIB O\(_3\) at all high-elevation sites contributed a significant proportion to total O\(_3\) throughout the year and throughout the observed total O\(_3\) frequency distribution, while EIB O\(_3\) at most urban sites contributes a major portion to total O\(_3\) during non-summer months and to the mid-range concentrations (30-50 ppb) of the frequency distribution. The different patterns in the West noted in the draft PA and Lefohn et al. (2012) may be attributable to the lack of bias adjustment in the EPA model described in the draft PA. One might hypothesize that if a bias adjustment were performed on the daily MDA8 predictions in the EPA model described in the draft PA that higher MDA8 values might occur during the spring and fall periods. If this would occur, then a similar pattern might occur to the pattern described in previous publications.

![Graph showing observed MDA8 O\(_3\) and daily STT-S counts for 2011 for the Chatfield (CO) (080350004) monitoring site. The STT-S counts, which were quantified for a site in Jefferson County (CO) (080590006), were superimposed over the observed data at the Chatfield site.](image)

Figure 3-50. Observed MDA8 O\(_3\) and daily STT-S counts for 2011 for the Chatfield (CO) (080350004) monitoring site. The STT-S counts, which were quantified for a site in Jefferson County (CO) (080590006), were superimposed over the observed data at the Chatfield site.

It would also help the reader if the authors of the draft PA provide examples for specific sites that describe the observed and USB concentrations for the eight sites used in the draft PA risk assessment (Atlanta, Boston, Dallas, Detroit, Philadelphia, Phoenix, Sacramento, and St. Louis). In the draft PA, analyses are presented that estimate exposure and risk for simulated populations in eight study areas. The eight study areas represent a variety of circumstances about population exposure to short-term concentrations of O\(_3\) in ambient air. The eight study areas range in total population size from approximately two to eight million and are distributed across the US in seven different NOAA climate regions: The Northeast, Southeast, Central, East North
Central, South, Southwest and West. In Figs. 3-51 through 3-57, total observed O₃ concentrations, USBₐB estimates (data provided by the EPA), and STT-S counts are presented for 2007 for seven of the eight sites (i.e., Atlanta, Boston, Dallas, Detroit, Philadelphia, Sacramento, and St. Louis) used by the EPA in its risk analyses presented in the draft PA.

Figure 3-51. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USBₐB) 8-h daily maximum concentrations for a site in Atlanta, Georgia (AQS ID 132470001) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O₃ values. Daily USBₐB 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
Figure 3-52. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB_{AB}) 8-h daily maximum concentrations for a site in Boston, Massachusetts (AQS ID 250092006) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O_3 values. Daily USB_{AB} 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
Figure 3-53. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB\textsubscript{AB}) 8-h daily maximum concentrations for a site in Dallas, Texas (AQS ID 481130087) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O\textsubscript{3} values. Daily USB\textsubscript{AB} 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
Figure 3-54. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USBAB) 8-h daily maximum concentrations for a site in Detroit, Michigan (AQS ID 261630019) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O₃ values. Daily USBAB 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.

Figure 3-55. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USBAB) 8-h daily maximum concentrations for a site in Philadelphia, Pennsylvania (AQS ID 420170012) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O₃ values. Daily USBAB 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
Figure 3-56. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB_{AB}) 8-h daily maximum concentrations for a site in Sacramento, California (AQS ID 060670012) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O₃ values. Daily USB_{AB} 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.
Figure 3-57. A comparison of the observed 8-h daily maximum concentration with the estimated bias-adjusted US Background (USB\textsubscript{AB}) 8-h daily maximum concentrations for a site in St. Louis, Missouri (AQS ID 291831002) for April-October 2007. The daily stratospheric-tropospheric transport to surface (STT-S) trajectories, as estimated by Professor Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, are overlaid with the daily O\textsubscript{3} values. Daily USB\textsubscript{AB} 2007 values provided by the EPA. See Lefohn et al. (2011, 2012, 2014) for details how the STT-S values are estimated.

For many of the sites (Figs. 51-57), higher spring USB\textsubscript{AB} O\textsubscript{3} was followed by lower values during the summer, which were then followed by rising USB\textsubscript{AB} O\textsubscript{3} during the fall months. Focusing on the difference between the observed and USB\textsubscript{AB} concentrations (i.e., the gaps), the pattern varies by site. The Gaps indicate the apparent influence of anthropogenic sources on each site. The pattern of the difference between the observed and USB\textsubscript{AB} concentrations (i.e., gaps) indicate for many of the seven sites the variability of USB\textsubscript{AB} during specific periods. Enhanced O\textsubscript{3} levels associated with stratospheric contribution occur across the seven sites with the result that USB\textsubscript{AB} contributes in varying amounts (depending upon season and location of the site) to the total observed O\textsubscript{3} concentrations across the US.

3.2.10 Model Performance USB versus USB\textsubscript{AB}

In a perfect world when models perform well, the estimates of USB background O\textsubscript{3} should be higher than USB\textsubscript{AB}. This is because the USB estimates are defined as the O\textsubscript{3} concentration that would occur if all U.S. anthropogenic O\textsubscript{3} precursor emissions were removed (draft ISA, Page ES-3). While USB is an estimate of O\textsubscript{3} concentrations that could be achieved if all U.S. anthropogenic sources were eliminated, USB\textsubscript{AB} is an estimate of how much O\textsubscript{3} can be attributed to background sources when those anthropogenic sources are still present. USB\textsubscript{AB}
background is titrated by the NOx associated with anthropogenic sources. Thus, it would be anticipated that USB estimated concentrations would generally be higher than the estimated USBAB values. Fig. 3-58 illustrates the difference between the estimates of USB and USBAB, before and after a bias adjustment is made (Dolwick et al., 2015). Prior to the application of the bias-adjustment, there was a clear tendency for the CMAQ zero-out modeling to estimate higher levels of USB MDA8 O3 concentrations compared to source apportionment USBAB over most sites in the western US. As noted by the authors, constraining the USB and USBAB estimates for model bias brings the estimates across the two methodologies closer together.

Fig. 3-59 illustrates the bias-adjusted model estimates for USB and USBAB from the CMAQ and CAMx models, respectively (Dolwick et al., 2015). The spatial patterns for the April-October mean bias-adjusted MDA8 values between the two sets of estimates are similar. However, differences exist as one compares the site estimates using the two models. The differences in the estimates described in Dolwick et al. (2015) were based on 7-month mean bias-adjusted MDA8 values. If one examined the daily time series for USB and USBAB MDA8 values, the differences in the estimates for USB and USBAB would be greater. These daily differences are not quantified here because a comparison of daily USB and USBAB values was not available to assess.

Dolwick et al. (2015) noted that because the two distinct model approaches estimated similar background impacts over the rural portions of the western U.S., they believed greater confidence could be placed on the combined results. However, the authors noted that while the CAMx and CMAQ model simulations provided consistent estimates in their study of rural USB O3 levels in the western U.S., the CAMx source-apportionment approach (i.e., USBAB) predicted lower background contributions in the urban areas than USB, as anticipated, because anthropogenic emissions react with and destroy some fraction of the O3 in the CAMx tracer species used to track the background O3 contribution.

As noted in earlier sections, the USB modeling results described in the draft PA (EPA, 2019b) indicate the following seasonal patterns: (1) Natural and USA O3 contributions peak in July, which is in the middle of the traditional O3 season, while long-range intercontinental transport of international O3 peaks in the spring. (page 2-58); (2) The natural contribution has a single maximum in late summer in the West, whereas, in the East there is evidence of two peaks— the largest in late Spring and a second peak in early Fall. (page 2-44). The previous conclusion in the 2014 PA (EPA, 2014a) and the 2013 ISA (EPA, 2013, in section 3.4) was that background O3 was greatest over the US during the spring and early summer (i.e., March-June period). While the estimates of the absolute values for background O3 might differ depending upon the choice of USB or USBAB, I do not believe that the choice of USB or USBAB explains the differences in the seasonal patterns associated with the background O3 modeling results in the draft PA from previous reported patterns for background O3.

As noted earlier, Dolwick et al. (2015) and Lefohn et al. (2014) used bias-adjusted estimates for USBAB and EIB, respectively. The different pattern in the West noted in the draft PA compared to the pattern reported by Dolwick et al. (2015) and Lefohn et al. (2014) may be attributable to the lack of bias adjustment in the EPA model described in the draft PA. The draft PA notes that bias adjustment was not performed in the modeling effort. In their analyses,
Figure 3-58. Difference between the estimates of USB and USB\textsubscript{AB}, before and after a bias adjustment is made. Source: Dolwick et al. (2015).
Figure 3-59. April-October mean bias-adjusted USB MDA8 O₃ (ppb) at monitoring locations across the western U.S., as estimated by a 2007 CMAQ zero-out simulation. b. April-October mean bias-adjusted USBab MDA8 O₃ (ppb) at monitoring locations across the western U.S., as estimated by a 2007 CAMx source apportionment simulation. Source: Dolwick et al. (2015).

Lefohn et al. (2014) noted that model performance at low-elevation sites tended toward larger under prediction biases in the cool months (i.e., November-April) and larger over prediction biases in warm months (June-October), particularly for sites in the southern and eastern US. For
almost all high-elevation sites in their analyses, the model under predicted in the spring months when the above-median MDA8 Global Background O_3 coincided with diagnosed STT-S events as per the stratospheric trajectory analyses performed by Dr. Heini Wernli, Institute for Atmospheric and Climate Science, ETH Zurich in Switzerland. For urban sites with higher spring anthropogenic influences, it was more likely that over predictions were associated with anthropogenic O_3. There continues to be strong evidence, as supported in the literature, as well as EPA’s own analyses (e.g., EPA, 2014a), that background O_3 across the US is highest at many sites during the springtime (including into the month of June) and background O_3 is an important contributor at many high-elevation sites throughout the year.

Empirical data indicate that as emission reductions occur across the US, the higher MDA8 concentrations shift at many O_3 monitoring sites from the summer toward the March-June months. In addition, as emission reductions occur, the distribution of hourly average concentrations shift from the higher values toward the middle values and the lower values shift upward toward the middle values. There is a compression of the distribution. Further, as emission reductions occur, background O_3 concentrations increase their percentage in the observed total O_3 concentration with the result that the compressed distribution of hourly average concentrations begins to resemble the distribution of background O_3. Hopefully, the application of a bias adjustment to the estimated modeled USB estimates described in the draft PA results in patterns that resemble the background O_3 patterns published previously in the literature, as well as the patterns observed in the empirical data as emission reductions have occurred. If bias adjustments to the model do not change the seasonal patterns described for the USB model in the draft PA, then further model sensitivity analyses are recommended. The patterns described earlier that are derived from empirical data (i.e., the compressed distributions and the seasonal shift from the summer months to the March-June period) provide those of us who have applied models to estimate USB, USBAB, or EIB with the opportunity to assess the adequacy of our results.

3.2.11 Background O_3 and the W126 Exposure Metric

The Lapina et al. (2014) analysis is summarized in the draft PA (pages 2-28, 2-30, 2-31, 2-59) for discussing the contribution for background O_3 to W126 cumulative exposures. Lapina et al. (2014), using three regional or global chemical transport models, quantified the W126 exposure index in the US in the absence of North American anthropogenic emissions (North American background or “NAB”). The investigators noted that the season with the highest observed O_3 concentrations depends on a specific location. According to the authors, this made modeling the maximum 3-month W126 cumulative value in the continental US computationally expensive. To avoid this expense, Lapina et al. (2014) focused on a fixed 3-month period, May–July 2010 for their analyses. However, as noted in previous sections, the maximum 3-month W126 exposures occur during the March-June period in many vegetation areas across the US. To better quantify the importance of background O_3 in influencing the W126 cumulative exposures, the estimates performed in the 2014 PA (EPA, 2014a) may provide more insight on the importance of background O_3 influencing the W126 values than the analyses performed by Lapina et al. (2014).
In the 2014 PA (EPA, 2014a), the EPA used the 2007 zero-out modeling to assess NB (i.e., natural background), NAB (North American Background), and USB influences at four sample locations: Atlanta GA, Denver CO, Farmington NM, and Riverside CA. Each of the four analyses locations had relatively high observed values of W126 in 2007, as averaged over all sites in the area: Atlanta (25.1 ppm-hrs), Denver (19.6 ppm-hrs), Farmington (20.2 ppm-hrs), and Riverside (36.0 ppm-hrs). EPA considered the fractional influence of background O₃ on annual W126 levels in four locations. Fig. 3-62 (originally Fig.2-16 in the 2014 PA) shows the results. Based on the fractional influence methodology, natural background sources were estimated to contribute 29-50% of the total modeled W126, with the highest relative influence in the intermountain western US (i.e., Farmington, NM) and the lowest relative influence in the eastern U.S. (i.e., Atlanta). US background (USB) was estimated to contribute 37-65% of the total modeled W126. As noted in the 2014 PA, the proportional impacts of background were slightly less for the W126 metric than for seasonal mean MDA8 (discussed in section 2.4.2 of the 2014 PA), because of the sigmoidal weighting function that places more emphasis on higher O₃ days when background fractions are generally lower. The key conclusion from the EPA’s cursory analysis summarized in the 2014 PA was that background O₃ could comprise a non-negligible portion of current W126 levels across the US. These fractional influences were greatest in the intermountain western US and were slightly smaller than the seasonal mean MDA8 metric. I would suggest that this analysis, which was described in the 2014 PA, be included in the draft PA so that the reader can better place into perspective the role that background O3 may contribute to the W126 exposure metric.

Figure 2-16. Fractional influence of background sources to W126 levels in four sample locations. Model estimates based on 2007 CMAQ zero-out modeling.

Figure 3-62. Fractional influence of background sources to W126 levels in four sample locations. Model estimates based on 2007 CMAQ zero-out modeling. Source: EPA (2014a).
4. Future Research on Health

Areas of future health research are discussed in the draft PA (Section 3.6) starting on page 3-88. The authors note that a critical aspect of the Agency’s consideration of the evidence and the quantitative risk/exposure estimates is the understanding of Oz effects below the lowest concentrations studied in controlled human exposure studies, for longer exposures and for different population groups, particularly including people with asthma. The authors highlight areas for future health-related research, model development, and data collection activities to address these uncertainties and limitations in the current scientific evidence. The items identified are as follows:

1. **An important aspect of risk assessment and characterization to inform decisions regarding the primary standard is our understanding of the exposure-response relationship for Oz-related health effects in at-risk populations.** Additional research is needed to more comprehensively assess risk of respiratory effects in at-risk individuals exposed to Oz in the range of 40 to 80 ppb, and lower (emphasis added), for 6.6 hours while engaged in moderate exertion.

As noted in the draft PA, the lower hourly average Oz concentrations shift from the lower values toward the mid-range as emissions are reduced. The upward shifting of the hourly average concentrations from the low-end of the distribution is indicative of background Oz becoming more and more important in the lower MDA8 concentration range. Thus, suggesting that researchers utilize Oz concentrations in the background concentration part of the distribution may not provide helpful information for the standard-setting process. I would suggest that additional focus be on the 6.6-hour studies that are in the 50 ppb range using variable exposure methodologies that resemble current ambient levels.

2. **Epidemiologic research continues to be important to consideration of the public health impacts of Oz.** However, there remains a need to continue to examine and improve analytical approaches, and to better understand the role of co-pollutants, as well as temperature, in contributing to potential confounding or effect modification in epidemiologic models.

The heterogeneity that is evident in the epidemiologic research results needs to be better explained. Temperature and the role of co-pollutants may help explain the heterogeneity observations.

3. **Epidemiologic studies assessing the influence of “long” or “short” Oz exposures is complicated by the exposure history of study populations.** Further, existing studies generally focus on either long-term or short-term exposure separately, thereby making it difficult to assess whether a single exposure versus a longer exposure, or a combination of both single and longer exposure, influence health outcomes of the study subjects (emphasis added). Studies that include a longer assessment period and can simultaneously assess the impact of these various exposure durations are needed.
While it may appear that to reduce acute O₃ health effects requires a short-term standard, such as the 4th highest 8-h daily maximum exposure metric and that a long-term average concentration standard is required to reduce chronic O₃ health effects, such is not necessarily the case. In 2015, the EPA believed that by implementing a control strategy that reduces the higher concentrations that concentrations of concern for “chronic” effects would also be reduced (Federal Register, 2015 – page 65399). The US EPA (Federal Register, 2015 – page 65358) commented on how the Agency chose to reduce “chronic” and “acute” O₃ exposures for the protection of human health. The Agency believed that the reduction of the repeated occurrences of exposures of concern would reduce both “chronic” and “acute” health effects. The EPA stated:

...This point was also highlighted by some commenters who advocated for a level of 60 ppb, based on the discussion of O₃-induced inflammation in the proposal. In particular, this latter group of commenters highlighted discussion from the proposal indicating that “[i]nflammation induced by a single O₃ exposure can resolve entirely but, as noted in the ISA (U.S. EPA, 2013a, p. 6-76), “continued acute inflammation can evolve into a chronic inflammatory state”’ (e.g., ALA et al., p. 48). Consistent with these comments, and with her consideration of estimated exposures of concern in the proposal, the Administrator judges that the types of respiratory effects that can occur following exposures of concern, particularly if experienced repeatedly, provide a plausible mode of action by which O₃ may cause other more serious effects. Because of this, as in the proposal, the Administrator is most concerned about protecting against repeated occurrences of exposures of concern (emphasis added).

The EPA then commented (Federal Register, 2015 – page 65358) on the reduction of the higher concentrations and how these reductions not just affect the highest MDA8 concentrations, but also those values that are below these highest levels. In other words, by reducing the peak exposures, there is a cascading of the upper end of the distribution of O₃ concentrations down toward the mid-level values. The EPA stated as follows:

...In addition, though the available information does not support the identification of specific benchmarks below 60 ppb that could be appropriate for consideration for at-risk populations, and though CASAC did not recommend consideration of any such benchmarks, the EPA expects that a revised standard with a level of 70 ppb will also reduce the occurrence of exposures to O₃ concentrations at least somewhat below 60 ppb (U.S. EPA, 2014a, Figures 4-9 and 4-10). Thus, even if some members of at-risk populations may experience effects following exposures to O₃ concentrations somewhat below 60 ppb, a revised level of 70 ppb would be expected to reduce the occurrence of such exposures. Therefore, the EPA has considered O₃ exposures that could be relevant for at-risk populations such as children and people with asthma, and does not agree that controlled human exposure studies reporting respiratory effects in healthy adults following exposures to 60 ppb O₃ necessitate a standard level below 70 ppb.

Thus, given EPA’s conclusions reached in the 2015 O₃ rulemaking process as summarized above, it is suggested that both epidemiological researchers, as well as policy makers, be aware
that a long-term epidemiological study does not have to use metrics that are based on long-term averages. Rather, it is suggested that investigators performing long-term epidemiological studies consider that the long-term effects may be associated with repeated acute exposures. Lefohn et al. (2010) described a sigmoidal weighting scheme for hourly average O₃ concentrations. The weighting scheme addresses the nonlinearity of response (i.e., the greater effect of higher concentrations over the mid- and low-range values) on an hourly basis. The weighting scheme might be relevant for those who wish to develop daily O₃ exposure metrics that could be used to integrate cumulative exposures over time. The W90 weighting scheme, different in form than the W126 metric currently used for assessing O₃ risk to vegetation, is shown in Fig. 3-63 below. The form of the W90 index is \(\Sigma w_i \times C_i \) with weight \(w_i = 1/[1 + M \times \exp (-A \times C_i/1000)] \), where \(M = 1400, A = 90, \) and where \(C_i \) is the hourly average O₃ mixing ratio in units of ppb. The W90 index has units of ppb-hrs.

![Figure 3-63](image)

Figure 3-63. The weighting applied to hourly average ozone values for the calculation of the W90 exposure index (see Lefohn et al., 2010).

4. References

Adams, W.C., 2003. Comparison of chamber and face mask 6.6-hour exposure to 0.08 ppm ozone via square-wave and triangular profiles on pulmonary responses. Inhalation Toxicology 15: 265-281.

Adams, W.C., 2006a. Comparison of chamber 6.6-h exposures to 0.04 - 0.08 ppm ozone via square-wave and triangular profiles on pulmonary responses. Inhalation Toxicology 18, 127-136.
Adams, W.C., 2006b. Human pulmonary responses with 30-minute time intervals of exercise and rest when exposed for 8 hours to 0.12 ppm ozone via square-wave and acute triangular profiles. Inhalation Toxicology 18, 413-422.

Guo, JJ; Fiore, AM; Murray, LT; Jaffe, DA; Schnell, JL; Moore, CT; Milly, GP. (2018). Average versus high surface ozone levels over the continental USA: Model bias, background influences, and interannual variability. Atmos Chem Phys 18: 12123-12140. http://dx.doi.org/10.5194/acp-18-12123-2018.

Horstman DH, Folinsbee LJ, Ives PJ, Abdul-Salaam S, McDonnell WF. 1990. Ozone concentration and pulmonary response relationships for 6.6-hour exposures with five hours of moderate exercise to 0.08, 0.10, and 0.12 ppm. Am J Respir Crit Care Med 142: 1158-1163.
Jaffe, DA; Cooper, OR; Fiore, AM; Henderson, BH; Tonnesen, GS; Russell, AG; Henze, DK; Langford, AO; Lin, M; Moore, T. (2018). Scientific assessment of background ozone over the US: Implications for air quality management. 6. http://dx.doi.org/10.1525/elementa.309.

Paoletti, E; Manning, WJ. (2007). Toward a biologically significant and usable standard for ozone that will also protect plants [Review]. *Environ Pollut* 150: 85-95. http://dx.doi.org/10.1016/j.envpol.2007.06.037.

162

Trainer, M; Parrish, DD; Buhr, MP; Norton, RB; Fehsenfeld, FC; Anlauf, KG; Bottenheim, JW; Tang, YZ; Wiebe, HA; Roberts, JM; Tanner, RL; Newman, L; Bowersox, VC; Meagher, JF; Olszyna, KJ; Rodgers, MO; Wang, T; Berresheim, H; Demerjian, KL; Roychowdhury, UK. (1993). Correlation of ozone with NOy in photochemically aged air. J Geophys Res 98: 2917-2925.

165

