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1. CONSISTENCIES AND INCONSISTENCIES 
 
The third draft of the PM Criteria Document (DCD3) concludes that there is agreement 
and consistency of PM health effect estimates across a number of epidemiologic studies.  
In fact, it is difficult to see this consistency even within the multi-city studies that DCD3 
appropriately emphasizes.  Even among those analyses that do estimate health effect 
reductions from reduced PM, the quantitative estimates differ by at least an order of 
magnitude.  What is more striking are the inconsistencies and the sensitivity of PM effect 
estimates to modeling choices, including additivity assumptions, seasonal differences, 
regional grouping, spatial heterogeneity, lags and multiple lags, and treatment of gaseous 
pollutant confounders. 
 
That PM effect estimates are delicate is not surprising given that they are superimposed 
on much stronger effects due to concomitant weather variations, for example.  These 
widely varying, sometimes negative, PM health effect estimates are symptomatic of 
probable model shortcomings.  Given the difficulty of the task of estimating PM health 
effects, it is a matter of perspective whether one uses the term ‘consistent’ to describe the 
diverse findings summarized in DCD3.  The perspective of my comments is to point to 
likely model deficiencies and to suggest alternatives that might lead to PM health effect 
estimates that are truly more consistent and therefore more credible. 
 
 
2. CONFOUNDING AND ADDITIVITY 
 
Because PM variations are correlated with variations in weather, seasons, and other air 
pollutants, great care is needed in articulating PM effects separate from the effects of 
these co-varying series. This is the confounding issue.  Special care is needed in 
separating PM effects from those covariates that putatively have much larger effects than 
PM, such as weather and season.  The emphasis in DCD3, on the contrary, has been on 
co-pollutants whose effects are likely of comparable magnitude to those of PM. 
 
With few exceptions, the literature cited by DCD3 deals with co-varying confounders 
through an additivity assumption.  The additivity assumption is very strong and it 
presupposes that the incremental effects of PM would be the same at any level of the 
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confounding variable.  Thus, for example, the presumption is that incremental PM effects 
are the same at moderate temperature and humidity as they are at extreme temperature 
and humidity.  If this assumption should fail, then the common and naïve additive 
modeling of PM effects can lead to biased and meaningless estimates of PM effects. This 
is especially true when the proportionality of PM effects, as a function of PM exposure, is 
in question.  Without a systematic exploration of non-additivity, we cannot conclude that 
some part of the weather effects is mistakenly attributed to PM. 
 
There are several strategies for incorporating non-additivity, i.e., allowing for differential 
PM effects at different levels of the confounding variables.  One strategy is to allow for 
the estimation of a joint response surface that includes both PM and weather.  In addition 
to providing better separation of effects, the joint response surface provides a fuller 
understanding of PM effects and a better guide to regulation and public policy.  A joint 
response surface could be of the spline type or other parametric or semi-parametric form.  
An example of this approach is found in Morris and Naumova [1995] who found, for 
example, that CO effects were different at high temperatures than they were at low 
temperatures. 
 
A second strategy for incorporating non-additivity of PM effects is to stratify, effectively 
to do separate analyses at different levels of the confounding variable.  This strategy has 
been used in those studies that seek to separate seasonal effects from PM effects. An 
example of this approach is described in DCD3 [8-30], which refers to Samet et al. 
[2000].   For example, winter and summer PM effects could be separately estimated by 
including two PM effect parameters in the model. Where separate season-specific 
estimates of PM effects have been obtained, it is not uncommon for these effect estimates 
to be different, see Lumley and Sheppard [2000] and Smith [2000] for example.  Roberts 
[2002], in a recent reanalysis of the Chicago mortality time-series data found positive PM 
mortality effects in summer and negative PM mortality effects in winter.  The advantage 
of the stratification approach to non-additivity is that its structural constraints are simple 
to describe.  This approach could be extended to weather variables by creating weather 
‘bins’ and by allowing for separate PM effect parameters for each weather bin. A recent 
reanalysis by Roberts [2002] of the Chicago mortality time-series also used three 
maximum- temperature bins with the result that the warm temperature bin showed a 
positive PM mortality effect, the cold temperature bin showed a negative effect, and the 
moderate temperature bin showed no effect. 
 
No discussion of potential confounding is adequate without an investigation of the joint 
effects of PM and its putative confounders.  In this respect DCD3 falls short because it 
relies on the results of studies where additive assumptions were built into the model from 
the start.  I strongly recommend that the multi-city studies be reanalyzed in a way that 
allows for non-additive PM effects, especially in relation to weather but also in relation to 
co-pollutants. Stratification is an important diagnostic tool that could be applied to all 90 
cities; inconsistencies revealed by stratification should be regarded as symptoms of 
unmodeled effects.  In any event, it seems likely that either seasonal or weather 
stratification will reveal shortcomings of the strong additivity assumptions in DCD3. 
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Finally, DCD3 [8-217,218] suggests that a principal components analysis, in the context 
of multiple pollutant exposure, could provide useful new information, citing Mar et al. 
[2000]. This point of view seems to derive from the fact that the new principal 
component variables are uncorrelated with one another, unlike the original pollutant 
variables.  However, principal component coefficients (loadings) are themselves unstable 
if the pollutant variables have sizable cross-correlation.  It would be inappropriate for to 
rely on interpretations of these coefficients to draw conclusions about the relative 
importance of different pollutants. 
 
 
3. HETEROGENEITY OF PM EFFECTS AND EFFECT MODIFICATION 
 
DCD3 [8-26] correctly emphasizes the importance of the 90-city study, citing Samet et 
al. [2000] and Dominici et al [2000a, 2002] where the same modeling strategy was used 
for all cities in the study.  Thus the patent diversity or heterogeneity of PM effect 
estimates cannot be attributed to differences in modeling strategies.  There are different 
statistical approaches to the analysis of heterogeneous effect estimates.  It is reasonable to 
suppose that city-to-city variations in PM effect estimates, including many negative PM 
effects, are not due statistical variability arising from data limitations.  This appears to be 
ruled out although DCD3 does not cite a P-value for the rejection of this hypothesis. 
 
The approach to heterogeneity favored by DCD3 [8-26-29], is to consider inter-city PM 
effect differences as genuine but unexplained random differences.  Adopting this random 
effects approach implicitly introduces the notion of a population of cities for which the 90 
study cities are treated like a random sample of cities.  This approach also introduces the 
notion of a population mean PM effect.  Under the adopted model, this population mean 
PM effect is estimated, with apparently high precision [8-29].  However, the population 
mean is purely a phantom model parameter so its estimation should not be of great 
interest in the real regulatory world.  However, the random effects model is useful for 
refining the individual city-specific estimates of PM effects and their precision and it 
does allow for the incorporation of a spatial model for regional-scale variation of PM 
effects. 
 
This is not to say that PM effect estimates for different cities could not be combined in a 
somewhat more meaningful way.  For example, one could obtain a population weighted 
combined PM effect estimate for the 90 cities together with an associated confidence 
interval.  If, for the moment, we allow the correctness of a linear PM effect in every city, 
then this combined population weighted estimate can be interpreted in terms of the 
overall effect of a simultaneous fixed PM reduction in all 90 cities.  One could also 
divide the pooled data into 5-year periods and examine the variability among combined 
PM effect estimates for each period.  Such data splitting provides a simple check on 
robustness of the modeling exercise. 
 
A third approach to differences among PM effect estimates is to relate such differences to 
characteristic differences among the 90 cities of the study. This is called “effect 
modification” in DCD3 [8-4 – 8-9] and is plausibly the most rational and most useful 
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approach.  DCD3 carefully and wisely distinguishes between the issues of confounding 
and effect modification [8-4].  Effect modification arises as an issue only when PM 
effects have been separately computed from different data sets using the same model and 
estimation procedure, as in the 90-city study.  Effect modifiers are not time-series 
variables that could be confounded with time-varying PM.  Rather, effect modifiers are 
exogenous variables whose values differ among cities. 
 
DCD3 [8-29] discusses a variety of possible and sometimes plausible PM effect 
modifiers for the diversity of PM effect estimates.  Some putative PM effect modifiers for 
which data are available are variable demographic characteristics, climate statistics, 
proximity to pollutant sources, or statistical summaries of pollutant concentrations akin to 
climate statistics.  Samet et al. [2000] could not identify PM effect modifiers among 
those that they examined.  Other potential effect modifiers, such as differences in 
chemical composition of PM in different cities, have not been sufficiently examined 
likely because relevant data are not readily available. 
 
The approach typically used to test putative effect modifiers treats the separately 
estimated PM effects for each of the 90 cities as dependent-variable data for a second-
stage regression analysis [8-271].  A better approach, potentially with more statistical 
power, would be to simultaneously estimate PM effects at all cities using a 
parameterization of the PM effect or the baseline mortality rate that depends on the 
putative effect modifiers.  An interesting possibility is to use the long-term PM average 
concentration as an effect modifier for the baseline mortality in the multi-city time-series 
studies, perhaps in conjunction with demographic descriptors.  This modeling approach 
creates the possibility to simultaneously estimate both acute and long-term PM effects. 
 
The fact that few if any convincing PM effect modifiers have been found to account for 
patent differences among PM effect estimates is disconcerting because the discrepant PM 
effect estimates remain unexplained.  DCD3 should be open to the strong possibility that 
unresolved discrepant PM effect estimates, derived from the same modeling approach, 
point to probable inadequacies in the modeling approach such as an incorrect treatment 
of confounding variables or an incorrect characterization of the exposure-response 
relationship. 
 
Finally, it is important to draw attention to regulatory implications of unresolved 
discrepancies among PM effect estimates for different cities.  For example, in a number 
of cities it appears that PM health effects are absent, for example in Cleveland.  In such 
cities where PM effects are absent, would any health benefit be derived by reducing 
ambient PM? 
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4. HETEROGENEITY OF EXPOSURE 
 
Epidemiologic city-based studies of PM health effects, such as those cited and relied on 
by DCD3, have assumed a common or homogeneous PM exposure for all individuals in a 
city.  In fact, personal exposure studies such as the Toronto study by Clayton et al. [1999] 
show substantial heterogeneity of PM exposure among individuals within the same city.  
Likewise, multiple ambient PM monitoring sites within a single city show important 
spatial differences in ambient PM such as the Chicago and Los Angeles studies by Ito et 
al. [1995].  In the typical time-series study for a city, such as Dominici et al. [2000a], the 
time-varying measure of exposure is obtained by averaging data from available ambient 
monitoring sites in that city.  For ecological long-term PM effect studies, such as in Pope 
et al. [2002], the single exposure number for each city is obtained as both a time-
averaged and spatially averaged concentration for all monitors in that city. 
 
Examples show that different PM monitors within the same city can provide quite 
different estimates of PM effects in time-series studies; see Ito et al. [1995].  The same 
might also be true for ecological long-term effect studies, but I don’t know if this has 
been explored.  The PM effect estimate variation in the time-series studies is statistically 
meaningful.  Furthermore, Ito et al. [1995] show that it is not necessarily the case that 
straightforward monitor averaging provides more precise estimates of PM effects than 
other monitor combinations or even single monitors. In any event, the within-city 
disparities of PM effect estimates begs for some explanation, since unexplained 
heterogeneity casts some suspicion on the statistical models used to relate PM changes to 
health effect changes. 
 
Ito et al.’s [1995] examples of within-city heterogeneity of PM effect estimates have been 
recently updated by Roberts [2002] for Chicago, using additional monitoring stations and 
a longer study period.  Of the twelve sites that monitored PM10 during 1987-1994, four 
sites showed consistent significant positive association with same day mortality, while 
the other eight sites showed negligible and non-significant mortality associations. PM10 
averaged over all 12 sites was not as strongly associated with mortality as the big four.  
One site with daily PM10 showed smaller but significant mortality association. The PM 
effect estimates were obtained using a Poisson regression adjustment model comparable 
to the model used in the 90-city study by Samet et al. [2000], but care was taken to use 
estimating procedures that are not affected by computational issues identified for the S+ 
implementation of GAM models. 
 
The issue of spatial variability within cities has other implications.  A hypothetical 
example would be a situation in which some monitors typically record lower PM than 
others.  Suppose that the low-PM monitors are roughly proportional to the high-PM 
monitors. With a linear exposure-response, the effect estimates for the low-PM monitors 
will be larger than those for the high-PM monitors because they are using the same 
community health effects data.  Averaging across monitors will conceal the problem but 
not deal with it.  Instead, one needs a somewhat sophisticated spatial modeling approach 
to properly combine information from multiple monitors.  If the PM exposure-response 
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function has a threshold, then the estimated PM effects at low-PM monitors could be 
smaller than those at high-PM monitors. 
 
Another implication of within-city spatial variability goes to the issue of co-pollutant 
confounding.  PM is reported to be spatially more homogeneous within a city than 
gaseous co-pollutants that are potential confounders, as seen for example in Ito et al. 
[1995].  Then the city average for PM may be more representative of PM exposure than 
the city average for the gaseous pollutants, leading to the possibility that the PM effect 
estimate will carry effects properly attributable to gaseous pollutants [8-264]. 
 
A number of questions arise with regard to using ambient monitoring data as a measure 
of population PM exposure.  DCD3 [8-252] addresses the ambient-to-exposure question 
principally as a problem of measurement error.  Under a series of assumptions, using 
ambient PM as a surrogate for PM exposure would deflate the PM effect estimator in a 
model where effects are proportional to PM exposure, as described in Dominici et al. 
[2000b].  The deflation factor that connects ambient concentration with exposure could 
well be different for different cities and even for different monitors within the same city.  
For example, DCD3 [5-53] refers to personal monitoring studies that show ambient-to-
exposure calibrations that vary by location. 
 
Thus the spatial variability of the ambient-to-exposure calibration bears directly on the 
question of observed heterogeneity of estimates of PM effects across cities, as well as the 
heterogeneity of PM effect estimates when using different monitors within the same city.  
There is also the regulatory question that is posed by the heterogeneity of PM effect 
estimates. Averaging heterogeneous PM effect estimates does not make the heterogeneity 
go away.  The regulatory question concerns the implied reduction in health effects that 
could be expected from a specific regulatory standard.  For example, based on results 
from the multi-city studies, it is reasonable to suppose that a reduction of ambient PM 
will produce no health benefit in some cities.  This could be due to differences in 
chemical composition of PM in such cities, or due to the weak relation between ambient 
PM and PM exposure in such cities, or other specific attributes of such cities. 
 
 
 
5. THE RELATION BETWEEN EXPOSURE AND RESPONSE 
 
In the preceding section, I referred to implications for PM health effect estimates of the 
relation between ambient PM concentration and population PM exposure.  But the 
implications for ambient PM health effect estimates cannot be fully understood without 
also considering the relation between PM exposure and health effects.  Much of the work 
on the measurement error approach, exemplified by Dominici et al. [2000b] and Zeger et 
al. [2000], is solidly tied to an assumption of proportionality, i.e., the health effect 
reduction that follows from a fixed decrease in PM exposure is the same at high and low 
PM exposures.  However, there is a regulatory issue associated with presumed 
proportionality of exposure and effect. For a fixed PM reduction, the same effect 
reduction would be achieved in cities whose current PM levels are either high or low.  
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Furthermore, one could double the effect reduction in any city by doubling the PM 
reduction, so there is no obvious regulatory threshold based on health effects. 
 
DCD3 discusses the issue of exposure-effect proportionality vis-à-vis exposure 
thresholds in several places [5-98, 8-246].  When non-proportional effects are allowed in 
the effect estimation model, the estimated ambient PM-effect relation often departs from 
proportionality, as can be seen for many cities in multi-city studies, such as Daniels et al 
[2000] and Dominici et al. [2002].  In these studies, the response is modeled as low-order 
parametric spline function of ambient PM.  Application of the spline response model to 
different cities yielded a variety of response shapes, often with inadequate precision.  A 
better approach might have been to use equally-spaced discretized levels of ambient PM, 
say L1,L2,.. with nested indicator variables I(PM<L1), I(PM<L2),.. .  This kind of analysis 
would give direct estimates of the incremental ambient PM health response at each 
succeeding PM concentration level, together with an interpretable estimate of its 
uncertainty. 
 
Many of the disparate separate city estimates of PM response functions, reported in 
DCD3, seem more like non-proportional response functions, and those that are more or 
less proportional have varying proportionality constants indicative of different PM effects 
in different cities.  DCD3 goes further and reports a single overall proportional PM-effect 
function [8-247] by combining the disparate response functions for different cities.  
However, such an overall PM-effect function has no concrete interpretation or useful 
application because the city-to-city differences among PM-effect functions cannot 
reasonably be ascribed to sampling variability.  Given the patent inter-city heterogeneity 
of PM response functions, a combined PM response function that applies to no city, nor 
to the group of cities treated as single data set, provides little insight for standard-setting 
purposes. 
 
Better insights into the relationship between monitored ambient PM concentrations and 
anticipated community-level PM health effects can be obtained by modeling the 
relationship between monitored PM and individual PM exposure such as Dominici et al. 
[2000b].  However, individual-level exposure modeling should go hand-in-hand with the 
individual-level modeling of response to PM in order to build a model for community-
level response to ambient PM.  Individual-level response modeling is not incorporated in 
the above-cited reference where it is implicitly assumed that a common linear response 
function applies to all individuals. There are various approaches to individual-level 
response modeling, the simplest being to use a parametric family of response functions 
with parameters treated as random effects distributed across the community. As an 
example, a parametric family of response functions could allow for the possibility of 
individually varying response thresholds. 
 
To see the possible consequences of heterogeneous non-linear response at the individual 
level, consider the following simple example: 
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    Day 1  Day 2  Day 3 
 
Individual Exposures:  1   2   3 2   3   4  3   4   5 
Individual Responses:   0   0   0 0   0   0 1   1   1 
 
Community Exposure: 2.00  3.00  4.00 
Community Response:  0.00  0.00  1.00 
 
The above table should be interpreted as follows:  On day 1, personal exposures to a 
pollutant vary and are equally divided among concentration values 1, 2, 3.  Similarly, on 
day 2 and day 3, personal exposures to the pollutant vary and are equally divided among 
concentrations 2, 3, 4 and 3, 4, 5, respectively.  There are no health responses on day 1 
and day 2, but all individuals respond on day 3.  The community-level exposure and 
response for these three days are obtained by averaging the individual exposures and 
responses.  If the exposure-response function were assumed linear, then the linear 
regression fitted to the individual level exposure-response data would indicate an effect 
reduction of 0.25 per unit reduction of the pollutant.  However, a linear regression fitted 
to the community-level data indicates an effect reduction that is twice as large.  At the 
individual level, the empirical exposure-response function exhibits a threshold: 
 
Exposure: 1 2 3 4 5 
Response: 0 0 0.33 0.50  1 
 
This example is meant only to demonstrate how imposed linearity of exposure-response 
at the community level can be misleading when there is heterogeneity of individual 
exposure. 
 
DCD3 cites a number of longitudinal personal exposure studies [5-22, 23], although most 
are limited in size and scope.  These studies compare time series of total personal PM 
exposure with monitored PM on a daily basis, for selected individuals.  Linear 
calibrations are used to infer personal exposure to ambient PM, without explicit 
accounting for spatial variability of ambient PM.  The calibration between personal and 
ambient PM might be used to adjust PM effect coefficients derived from PM monitoring 
data as described in DCD3 [8-252], assuming throughout that the imposed linearity of 
exposure-response is correct.  This raises the question of study design because the 
ambient-personal calibration coefficient for each individual should be seen as a random 
effect across the population with spatial structure. Therefore, it is important to design the 
exposure survey in a way that allows one to reasonably estimate a distribution of the 
calibration coefficients, and to infer the implications of calibration variability for 
modification of PM effect estimates.  The use of pooled non-longitudinal data for 
recalibration of PM effects, such as PTEAM data, raises other issues that are not resolved 
in the DCD discussion [8-252]. 
 
Personal exposure studies are sometimes used also to infer non-ambient personal PM 
exposure, via subtraction of daily ambient PM from the daily total personal PM exposure.  
Non-ambient PM exposure can be seen as a co-pollutant, albeit with the same exposure-
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response function presumably.  The question is whether non-ambient PM effects might 
be confounded with ambient PM effects.  DCD3 concludes that the two PM exposures 
are not correlated over time [8-252] and therefore non-ambient PM exposure should be 
ruled out as a potential confounder of ambient PM exposure.  However, the non-ambient 
PM is a computed residual from a regression and therefore there is a downward bias in 
the naïve correlation between the computed non-ambient PM and the ambient PM 
regressor variable. 
 
 
6. LAG SELECTION, DISTRIBUTED-LAG MODELS, TIME AVERAGING, 
AND MORTALITY DISPLACEMENT 
 
DCD3 [8-237] discusses the issue of model selection in connection with choosing time-
series lags that maximize PM effects.  Even though a common 1-day lag was chosen for 
the 90-city study [8-27] to mitigate model selection bias, there is still bias present 
because other candidate lags were considered as part of the modeling process, see Samet 
et al. [2000].   Simulation studies by Lumley and Sheppard [2000] have shown that such 
model selection bias can be of the same order as the estimated PM effect itself.  Although 
model selection bias is acknowledged in DCD3 [8-243], it seems not to have affected the 
conclusions of DCD3. 
 
An alternative approach to lag selection is to use a distributed-lag model, where PM 
effects extend over several days and separate coefficients are estimated for all lags 
included in the model, typically 5 to 30 days.  This approach has some attractive 
possibilities and can potentially extract more information regarding short-term PM 
effects.  As a salutary exercise, it is a good idea to see what effect estimates might be 
produced by distributed-lag models that include non-causal negative lags. 
 
However, the distributed-lags literature cited in DCD3, such as the Schwartz [2000] 10-
city study, has at least one serious shortcoming: if one is to allow PM effects to extend 
over several days then one should also allow effects of confounding variables, such as 
weather and co-pollutants, to extend over several days.  Failure to allow for distributed-
lags in confounding variables can lead to an exaggeration of the PM effects summed over 
lags.  Summed lag effects, as reported in DCD3 [8-241], are typically several time larger 
than single lag effects, but they do not account for distributed-lag weather and co-
pollutant effects.  Finally, analyses of time-series PM mortality data, using distributed-lag 
models, have also been used to claim that reported PM mortality effects do not represent 
mortality displacement of frail individuals with short longevity.  But this claim is not 
derived from an analysis in the context of an explicit mortality displacement model, so 
the conclusions are simply interpretations. 
   
Time-series data have been used also in an attempt to extract possible PM effects at 
longer time scales by using time-averaged health effects in place of daily data, such as 
Zeger et al. [1999], Zanobetti et al. [2000], and Schwartz [2000] as cited in DCD3 [8-
244].  The proposal is to decompose the health effects time-series into a sum of 
component time series that represent increasing levels of temporal smoothing.  It is 
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reported that higher levels of temporal smoothing correspond to larger PM effects 
estimates, with the conclusion that still larger PM effects extend beyond short lags. This 
kind of analysis has some problems.  First, the smoothed time-series incorporate health 
effects that precede pollution, which is not in accord with causative models.  Second, 
even modest time-series autocorrelation, either in the PM series or in the health effects 
series, could affect the derived sequence of time-averaged PM effect estimates in ways 
that are not obvious. 
 
The foregoing studies are cited by DCD3 also as evidence that estimated PM mortality 
effects do not represent mortality displacement of frail individuals with short longevity.  
If this were the case, we should have seen reduced PM effects estimates for mortality 
time series with more smoothing, contrary to what has been reported.  However, the 
model under which the sequence of PM effect estimates is obtained is not an explicit 
mortality displacement model so its conclusions are at best informal.  What is sorely 
needed is a model analysis that explicitly accounts for and quantifies mortality 
displacement. 
 
DCD3 also cites a related calculation of PM longevity effects [8-231] by Brunekreef 
[1997].  The claim is that the life expectancy of 25 year olds is reduced by 1.11 years for 
each 10µg/m3 of time-averaged PM.  The estimate is derived from the ecological study of 
PM mortality by Pope et al. [1995].  This model calculation was not checked against 
available data but it would be a good idea to do so, if only to see whether the implications 
of the PM mortality effect estimates are in accord with actuarial data.  Checking would 
require a comparison of demographically adjusted mortality tables for different cities 
with different time-averaged PM. 
 
  
7. LONG-TERM PM-MORTALITY STUDIES 
 
DCD3 refers to several long-term ecological cohort studies of PM health effects, of 
which Pope et al. [2002] is the latest and most comprehensive.  In these long-term studies 
PM and mortality for each city are represented by single average numbers that do not 
vary over time.  The ecological studies cited by DCD3 are cohort studies that are limited 
to enrolled individuals for whom individual covariate information is available such as 
demographic information and smoking habits.  The individual covariate information is 
used to adjust crude mortality rates for the enrolled cohort so as to even out the mortality 
comparisons between cities.  PM health effects are inferred by relating time-averaged 
adjusted mortality to time-averaged monitored PM across cities. 
 
Both the Pope et al. [2002] cohort study of long-term PM effects and the Dominici et al. 
[2002] time-series study of short-term PM effects involve a comparable number of U.S. 
cities.  However, geographic variation in the cohort studies takes the place of time 
variation in the time-series studies.  City-specific effect modifiers in time-series studies, 
as discussed earlier, become confounding variables in the cohort studies.  A putative 
confounding variable in a cohort study is one that shows geographic covariability with 
PM.  Thus, demographic adjustments in the cohort studies are a way of accounting for 
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potential confounding of PM effects by demographic variables.  Similarly, between-city 
variations of co-pollutants and climate variables could be related to between-city 
variations of PM and thereby contribute to confounding of PM effects. 
 
On the other hand, where it is possible to split the data record into time segments, then a 
separate cohort-based analysis of PM effects could be done for each time segment, as was 
done in a very limited way in Pope et al. [2002].  For example, it would be 
straightforward to repeat the analysis using cohort deaths in 5-year intervals.  Then the 
different time-segment PM effect estimates in the cohort study are analogous to different-
city PM effect estimates in the time-series studies, and issues of PM effect heterogeneity 
would need to be addressed.  A cohort study that looks at a single time period is, in this 
respect, analogous to a time-series study for a single city. 
 
In some important ways, however, a multi-city cohort study suffers from disadvantages 
vis-à-vis a single-city time-series study.  For example, in a time-series study the 
population at risk is the same each day while in the cohort study the population at risk in 
each city is different and models are needed to bring the separate at-risk populations into 
alignment.  Also, the assigned PM concentration for a city needs to be related not to the 
average city-wide PM exposure but rather to the average PM exposure of the cohort 
assigned to that city.  Further, it is reasonable to suppose that this exposure measurement 
error will be different for different cities. 
 
With a fairly dense collection of cities, unmodeled geographic effect differences could be 
partially modeled as spatially autocorrelated residuals, as was done in this study.  This is 
a useful addition that is akin to allowing for temporal autocorrelation of residuals in time-
series studies to account for unmodeled variations in effects over time.  Even modest 
autocorrelation can sometimes have important consequences, especially on the precision 
of effects estimates. This is analogous to incorporating smooth time trends as explanatory 
variables in time-series studies. This cohort study states that incorporating spatial 
autocorrelation and using a spatially smooth residual field takes care of unmodeled risk 
factors; however, this could only work if the unmodeled risk factors were themselves 
spatially smooth fields.  Unmodeled risk factors can be geographically correlated with 
PM without having a locally smooth spatial structure. 
 
A strength of this study is the stratification approach that was used to estimate PM effects 
separately for different age groups, sexes, education levels, and smoking status.  The 
stratification approach bypasses some of the additivity assumptions that pervade the time-
series studies.  Figure 4 of Pope et al. [2002] shows clearly that PM effects can be 
different for different age groups, sexes etc.  Strict additivity would have enforced a 
common PM effect at all levels of all control variables, as in the time-series studies.  Of 
course, some additivity assumptions are necessary to avoid multi-way stratification of the 
data with severe loss of estimation precision.  Generalized additive models were used 
presumably at the point of combining effects of control variables but it was not clear how 
this was done or how the convergence problem of the S-Plus estimation routine impacted 
the PM effect estimates in this study. 
 

11 



Although pollutants other than PM were considered in Pope et al. [2002], it does not 
appear that these co-pollutants were used to adjust the baseline mortality when the PM 
effect was estimated.  Perhaps, more significant, is that there was no explicit adjustment 
for climate variables -- variables for which ample information is available for any time 
period.  Climate effects would not be efficiently modeled by a nonspecific spatial trend.  
Omission of these potentially important confounders is a significant shortcoming of that 
study. 
 
 
 
8. CONCLUSIONS 
 
DCD3 appropriately emphasizes multi-city studies, in particular the 90-city study, 
because a common modeling approach was used.  Thus the heterogeneity of PM effect 
estimates is less attributable to disparate model selection.  However, a multiplicity of 
cities does not guarantee that there are not important model deficiencies in the common 
model and the statistical methods relied upon by DCD3.  This review describes some of 
these deficiencies and offers suggestions for strengthening the analysis.  Because of the 
deficiencies in DCD3, we cannot draw comfortable conclusions regarding the 
circumstances and magnitudes of ambient PM health effects, or whether reported PM 
health effects are causative.  Below I briefly summarize points made in this review. 
 

1. Enforced additivity in the analysis model. The analysis model assumes that the 
PM health effect is necessarily the same at any temperature, in every season, and 
at any level of the co-pollutants.  Limited analyses show that this assumption is 
likely to be seriously violated.  There are at least three approaches to mitigate the 
problem, depending on availability of data – joint response surface modeling of 
PM and its confounders, stratification of the analyses based on confounder 
categories, or making the PM response be a parametric function of covariates. 

 
2. Enforced linearity of exposure-response. There is evidence that PM health 

effect reductions would be different at different PM levels, depending on 
geographic location.  This has important implications for regulation.  Enforced 
linearity conceals heterogeneity of response, and pooling of response functions to 
obtain linearity is not statistically justified and leads to regulatory dilemmas. 

 
3. Unexplained heterogeneity of PM health effect estimates.  There are 

significant differences among estimates of PM health effects for different cities 
and using different PM monitors within the same city.  There is no reconciliation 
of these differences in DCD3, which makes it hard to argue from the 
epidemiologic data for a causative role for PM, and which casts doubt on the 
completeness of the model under which the data have been analyzed. 

 
4. Incomplete characterization of the relations between ambient PM exposure, 

individual PM exposure, individual PM susceptibility to health effects, and 
community level health effect measures. While there has been progress in 
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modeling and understanding relations between the time variations of individual 
exposure and ambient PM, the important link to individual response functions on 
the health effects side has not been made.  The topic is important because it 
provides modeling guidelines for community level studies and elucidates the 
anticipated benefits of PM reductions. 
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